Schulausfall:
sofatutor 30 Tage kostenlos nutzen

Videos & Übungen für alle Fächer & Klassenstufen

Teilbarkeitsregeln der Zahlen 2, 3, 4 und 5 06:48 min

Textversion des Videos

Transkript Teilbarkeitsregeln der Zahlen 2, 3, 4 und 5

Hallo, schön, dich zu sehen! Niko wollte bei dem schönen Wetter im Park seine Mathe-Aufgaben machen. Er soll Divisionsaufgaben mit Hilfe von bestimmten Regeln lösen. Doch leider hat Niko nicht so richtig aufgepasst und weiß die Regeln nicht mehr. Diese Regeln nennt man Teilbarkeitsregeln. Und sie helfen dir herauszufinden, durch welche Zahl eine andere Zahl teilbar ist. Diese Teilbarkeitsregeln wollen wir heute gemeinsam erarbeiten, damit Niko seine Hausaufgaben erledigen kann. Bist du bereit? Dann los. Niko erinnert sich nur noch an eine Teilbarkeitsregel. Eine Zahl ist durch Zwei teilbar, wenn sie gerade ist. Richtig. Gerade Zahlen erkennst du daran, dass ihre letzte oder einzige Ziffer eine Zwei, Vier, Sechs, Acht oder Null ist. Das klingt doch ganz einfach. Das überprüfen wir noch schnell an einem Beispiel: Zehn geteilt durch Zwei, Zehn ist eine gerade Zahl, das sollte also gehen. Genau, 10/2=5. Auch 18 ist eine gerade Zahl. Und auch hier geht es: 18/2=9. Dann machen wir gleich mit der nächsten Teilbarkeitsregel weiter: In der geht es um die Zahl Drei. Eine Zahl ist durch Drei teilbar, wenn ihre Quersumme durch Drei teilbar ist. Doch was ist eigentlich eine Quersumme? Ich zeige es dir. Nehmen wir die Zahl 111. Das ist eine ganz schön große Zahl. Um die Quersumme zu erhalten, müssen wir die einzelnen Ziffern addieren. Wir rechnen also 1+1+1=3. Die Quersumme lautet also Drei. Kann man Drei durch Drei teilen? Na klar. Also sollte auch 111 durch 3 teilbar sein. Das überprüfen wir doch gleich mal. Wir rechnen also 111 geteilt durch 3. Elf geteilt durch Drei gleich Drei, 3•3=9, bleiben Zwei übrig. Wir holen die Eins herunter: 21/3=7. Und 7•3=21. Es bleibt kein Rest. Super. 111/3=37. Die Regel hat funktioniert. Kommen wir zur nächsten Teilbarkeitsregel. Eine Zahl ist durch Vier teilbar, wenn die letzten beiden Ziffern durch Vier teilbar sind. Als Beispiel nehmen wir die Zahl 124. Wenn wir uns nur die letzten beiden Ziffern ansehen, dann können wir sehen, dass 24/4=6 ist. 124 müsste also auch durch Vier teilbar sein. Auch das überprüfen wir schnell. 12/4=3 und 3•4=12. Bleiben Null übrig. 4/4=1. Und 1•4=4. Es bleibt kein Rest: 124/4=31. Auch hier stimmt die Teilbarkeitsregel. Jetzt zur Teilbarkeitsregel der Fünf. Eine Zahl ist durch Fünf teilbar, wenn die letzte Ziffer eine Fünf oder Null ist. Auch hier rechnen wir zur Probe ein Beispiel: 65 geteilt durch 5. Sechs geteilt durch Fünf gleich Eins. Und 1•5=5. Bleibt Eins übrig. 15/5=3. Und 3•5=15. Es bleibt kein Rest. 65/5=13. Stimmt also. Das ist ganz schön viel auf einmal. Deshalb fassen wir die Regeln noch einmal kurz zusammen: Eine Zahl ist durch Zwei teilbar, wenn sie gerade ist, also ihre letzte Ziffer eine Zwei, Vier, Sechs, Acht oder Null ist. Ein Zahl ist durch Drei teilbar, wenn ihre Quersumme, also die Summe all ihrer Ziffern, durch Drei teilbar ist. Eine Zahl ist durch Vier teilbar, wenn ihre letzten zwei Stellen durch Vier teilbar sind. Eine Zahl ist durch Fünf teilbar, wenn ihre letzte Stelle eine Fünf oder eine Null ist. Niko freut sich, dass er jetzt dank unserer Hilfe seine Matheaufgaben lösen kann. Mit den Teilbarkeitsregeln geht das jetzt ganz schnell. Bis bald. Tschüss.

Teilbarkeitsregeln der Zahlen 2, 3, 4 und 5 Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Teilbarkeitsregeln der Zahlen 2, 3, 4 und 5 kannst du es wiederholen und üben.

  • Wie lauten die Teilbarkeitsregeln? Vervollständige.

    Tipps

    Schau dir die letzte Ziffern der ersten Zahl genau an. Überlege nun, welche Teilbarkeitsregel zutrifft.

    Lösung

    Die Teilbarkeitsregeln lauten:

    • Eine Zahl ist durch 2 teilbar, wenn sie gerade ist, also ihre letzte Ziffer eine 2, 4, 6, 8 oder 0 ist. Die Zahl 64 ist zum Beispiel durch 2, teilbar, weil die letzte Ziffer eine 4 ist.
    • Eine Zahl ist durch 3 teilbar, wenn ihre Quersumme, also die Summe aus all ihren Ziffern, durch 3 teilbar ist. Die Quersumme bildest du, indem du alle Ziffern der Zahl addierst. Hier ein Beispiel mit der Zahl 111. Du rechnest alle Ziffern zusammen. Das geht so: 1 + 1 + 1 = 3. Das Ergebnis, also 3, ist durch 3 teilbar.
    • Eine Zahl ist durch 4 teilbar, wenn ihre letzten zwei Stellen durch 4 teilbar sind. Die Zahl 432 ist zum Beispiel durch 4 teilbar, weil die letzten beiden Stellen, also 32, durch 4 teilbar sind. 32 : 4 = 8.
    • Eine Zahl ist durch 5 teilbar, wenn ihre letzte Stelle eine 5 oder 0 ist. Die Zahl 35 zum Beispiel hat eine 5 an letzter Stelle und ist somit auf jeden Fall durch 5 teilbar.

  • Wie viel ergibt 111 : 3? Gib an.

    Tipps

    Die Quersumme bildest du, indem du alle Ziffern einer Zahl zusammenzählst.

    Die Quersumme von 123 ist 6.

    Lösung

    Eine Zahl ist durch 3 teilbar, wenn ihre Quersumme, also die Summe aus all ihren Ziffern, durch 3 teilbar ist.

    111 ist durch 3 teilbar, weil die Quersumme von 111 gleich 3 ist und somit durch 3 teilbar.

    • 1 + 1 + 1 = 3
    • 111 : 3 = 37

  • Welche der Zahlen lässt sich durch 4 teilen? Entscheide.

    Tipps

    Eine Zahl ist durch 4 teilbar, wenn ihre letzten zwei Stellen durch 4 teilbar sind.

    Teile die letzten beiden Ziffern durch 4 und schau dir das Ergebnis an.

    Lösung

    Eine Zahl ist durch 4 teilbar, wenn ihre letzten zwei Stellen durch 4 teilbar sind.

    Wir schauen uns die Beispiele gemeinsam an und sehen:

    • 116 ist durch 4 teilbar, weil 16 : 4 = 4. Die passende Aufgabe sieht so aus 116 : 4 = 29.
    • 260 ist durch 4 teilbar, weil 60 : 4 = 15. Die passende Aufgabe sieht so aus 260 : 4 = 65.
    • 140 ist durch 4 teilbar, weil 40 : 4 = 10. Die passende Aufgabe sieht so aus 140 : 4 = 35.
    • 106 ist nicht durch 4 teilbar, weil 6 : 4 = 1 Rest: 2.
    • 225 ist nicht durch 4 teilbar, weil 25 : 6 = 4 Rest: 1.
    • 118 ist nicht durch 4 teilbar, weil 18 : 4 = 4 Rest: 2.

  • Welche Zahlen sind durch 4 und welche durch 5 teilbar? Ordne zu.

    Tipps

    Die Zahl 555 ist durch 5 teilbar, weil die letzte Ziffer eine 5 ist.

    Die Zahl 432 ist durch 4 teilbar, weil die letzten beiden Stellen durch 4 teilbar sind. Die letzten beiden Stellen sind 32. Die Zahl 32 ist durch 4 teilbar. Das Ergebnis von 32 : 4 = 8.

    Lösung

    Eine Zahl ist durch 4 teilbar, wenn ihre letzten zwei Stellen durch 4 teilbar sind.

    • 224 ist durch 4 teilbar, weil 24 : 4 = 6. Die passende Aufgabe dazu ist 224 : 4 = 56.
    • 132 ist durch 4 teilbar, weil 32 : 4 = 8. Die passende Aufgabe dazu ist 132 : 4 = 33.
    • 356 ist durch 4 teilbar, weil 56 : 4 = 14. Die passende Aufgabe dazu ist 356 : 4 = 89.
    • 676 ist durch 4 teilbar, weil 76 : 4 = 19. Die passende Aufgabe dazu ist 676 : 4 = 169.
    Eine Zahl ist durch 5 teilbar, wenn ihre letzte Stelle eine 5 oder 0 ist.
    • 225 ist durch 5 teilbar, weil die letzte Stelle eine 5 ist. Die Aufgabe dazu ist 225 : 5 = 45.
    • 30 ist durch 5 teilbar, weil die letzte Stelle eine 0 ist. Die Aufgabe dazu ist 30 : 5 = 7.
    • 390 ist durch 5 teilbar, weil die letzte Stelle eine 0 ist. Die Aufgabe dazu ist 390 : 5 = 78.
    • 785 ist durch 5 teilbar, weil die letzte Stelle eine 5 ist. Die Aufgabe dazu ist 785 : 5 = 157.

  • Welche Zahl ist durch 2 teilbar? Entscheide.

    Tipps

    2, 4, 6, 8 und 0 sind gerade Zahlen.

    Lösung

    Eine Zahl ist durch 2 teilbar, wenn sie gerade ist, also ihre letzte Ziffer eine 2, 4, 6, 8 oder 0 ist.

    • 16 ist durch 2 teilbar, weil ihre letzte Ziffer eine 6 ist. Die passende Aufgabe dazu sieht so aus 16 : 2 = 8.
    • 19 ist nicht durch 2 teilbar, weil ihre letzte Ziffer eine 9 ist.
    • 55 ist nicht durch 2 teilbar, weil ihre letzte Ziffer eine 5 ist.
    • 99 ist nicht durch 2 teilbar, weil ihre letzte Ziffer eine 9 ist.
    • 100 ist durch 2 teilbar, weil ihre letzte Ziffer eine 0 ist. Die passende Aufgabe dazu ist 100 : 2 = 50.
    • 130 ist durch 2 teilbar, weil ihre letzte Ziffer eine 0 ist. Die passende Aufgabe dazu sieht so aus 130 : 2 = 65
  • Durch welche Zahlen sind diese Zahlen teilbar? Gib an.

    Tipps

    Eine Zahl kann durch mehr als eine Zahl teilbar sein.

    • Die Zahl 10 ist zum Beispiel durch 2 und durch 5 teilbar.

    Eine Zahl ist durch 3 teilbar, wenn ihre Quersumme, also die Summe aus all ihren Ziffern, durch 3 teilbar ist.

    Eine Zahl ist durch 4 teilbar, wenn ihre letzten zwei Stellen durch 4 teilbar sind.

    Lösung

    Eine Zahl kann gleichzeitig durch verschiedene Zahlen teilbar sein. Die Zahl 300 ist zum Beispiel durch 2, 3, 4 und 5 teilbar.

    • Eine Zahl ist durch 2 teilbar, wenn sie gerade ist, also ihre letzte Ziffer eine 2, 4, 6, 8 oder 0 ist.
    • Eine Zahl ist durch 3 teilbar, wenn ihre Quersumme, also die Summe aus all ihren Ziffern, durch 3 teilbar ist.
    • Eine Zahl ist durch 4 teilbar, wenn ihre letzten zwei Stellen durch 4 teilbar sind.
    • Eine Zahl ist durch 5 teilbar, wenn ihre letzte Stelle eine 5 oder 0 ist.