Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Größter gemeinsamer Teiler (ggT) – Übung

Trainiere, den Größten gemeinsamen Teiler (ggT) mit spannenden Aufgaben zu finden! Übe hier die Methoden der Teilermengen und Primfaktorzerlegung und vertiefe dein Wissen durch zahlreiche Übungen inklusive Lösungen und Erklärungen.

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.7 / 281 Bewertungen
Die Autor*innen
Avatar
Team Digital
Größter gemeinsamer Teiler (ggT) – Übung
lernst du in der 5. Klasse - 6. Klasse

Größter gemeinsamer Teiler (ggT) – Übung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Größter gemeinsamer Teiler (ggT) – Übung kannst du es wiederholen und üben.
  • Tipps

    Der Begriff „größter gemeinsamer Teiler“ verrät dir schon eine Möglichkeit, ihn zu bestimmen.

    Beispiel:

    $\text{ggT}(8, 12) = 4$

    Lösung

    Es gibt zwei Möglichkeiten, den größten gemeinsamen Teiler ($\text{ggT}$) zweier Zahlen zu bestimmen:

    Erste Möglichkeit:

    Wir können die Teilermengen der beiden Zahlen vergleichen. Von allen gemeinsamen Teilern ist der größte Wert der größte gemeinsame Teiler.

    Beispiel: $15$ und $25$

    $T_{15} = \lbrace 1, 3, 5, 15 \rbrace$

    $T_{25} = \lbrace 1, 5, 25 \rbrace$

    Der größte gemeinsame Wert ist $5$. Daher gilt:

    $\text{ggT}(15, 25) = 5$

    Zweite Möglichkeit:

    Wir können die Primfaktorzerlegung der beiden Zahlen nutzen. Multiplizieren wir alle gemeinsamen Primfaktoren, so erhalten wir den $\text{ggT}$.

    Beispiel: $18$ und $210$

    $18=2 \cdot 3 \cdot 3$

    $210 = 2 \cdot 3 \cdot 5 \cdot 7$

    Gemeinsame Primfaktoren sind $2$ und $3$. Daher gilt:

    $\text{ggT}(18, 210) = 2 \cdot 3 = 6$

    Wir erhalten jedoch den größten gemeinsamen Teiler nicht durch:

    • Multiplikation des größten Primfaktors mit dem kleinsten Teiler
    • Multiplikation der beiden Zahlen selbst
    • Division des Quadrats der ersten Zahl durch die zweite Zahl

  • Tipps

    Bei der Primfaktorzerlegung schreiben wir eine Zahl als Produkt aus mehreren Primzahlen. Eine Primzahl ist eine Zahl, die nur durch $1$ und sich selbst teilbar ist.

    Primfaktorzerlegung von $28$:

    $28 = 2 \cdot 2 \cdot 7$

    Lösung

    Die Primfaktorzerlegung hilft uns bei der Bestimmung des größten gemeinsamen Teilers ($\text{ggT}$) zweier Zahlen. Wir können den ($\text{ggT}$) als Produkt aller gemeinsamen Primfaktoren schreiben.

    Wir führen die Primfaktorzerlegung der beiden Zahlen durch. Dabei schreiben wir die beiden Zahlen als Produkt aus Primfaktoren:

    $12 = 2 \cdot 6 = 2 \cdot 2 \cdot 3$

    $16 = 2 \cdot 8 = 2 \cdot 2 \cdot 4 = 2 \cdot 2 \cdot 2 \cdot 2$

    Die beiden gemeinsamen Primfaktoren sind eine $2$ und noch eine $2$. Daher gilt:

    $\text{ggT} (12, 16) =2 \cdot 2 =4$

  • Tipps

    Teiler einer Zahl sind diejenigen Zahlen, durch die die gegebene Zahl ohne Rest teilbar ist.

    Die Teilermenge von $42$ lautet:

    $T_{42} = \lbrace 1, 2, 3, 6, 7, 14, 21, 42 \rbrace$

    Lösung

    Wir notieren die Teilermengen der beiden Zahlen und vergleichen dann ihren Inhalt: Von den Zahlen, welche in beiden Teilermengen vorkommen, ist der größte Wert der größte gemeinsame Teiler ($\text{ggT}$).

    Die Teilermenge von $20$ schreiben wir wie folgt:

    $T_{20} = \lbrace 1, 2, 4, 5, 10, 20 \rbrace$

    Die Teilermenge von $30$ schreiben wir wie folgt:

    $T_{30} = \lbrace 1, 2, 3, 5, 6, 10, 15, 30 \rbrace$

    In beiden Teilermengen kommen die Zahlen $1$, $2$, $5$ und $10$ vor. Der größte Wert ist $10$. Daher gilt:
    $\text{ggT}(20, 30) =10$

  • Tipps

    Primfaktorzerlegung von $32$:

    $32 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$

    Vergleiche die beiden Primfaktorzerlegungen: Welche Zahlen kommen in beiden Zerlegungen vor? Multiplizierst du sie, erhältst du den größten gemeinsamen Teiler.

    Lösung

    Die Primfaktorzerlegung hilft uns bei der Bestimmung des größten gemeinsamen Teilers ($\text{ggT}$) zweier Zahlen. Wir können den $\text{ggT}$ als Produkt der gemeinsamen Primfaktoren schreiben.

    Wir führen die Primfaktorzerlegung der beiden Zahlen durch. Dazu schreiben wir die beiden Zahlen als Produkt aus Primzahlen:

    $420 = 2 \cdot 210 = 2 \cdot 2 \cdot 105 = 2 \cdot 2 \cdot 3 \cdot 35 = 2 \cdot 2 \cdot 3 \cdot 5 \cdot 7$

    $90 = 2 \cdot 45 = 2 \cdot 3 \cdot 15 = 2 \cdot 3 \cdot 3 \cdot 5$

    Die gemeinsamen Primfaktoren sind $2$, $3$ und $5$. Daher gilt:

    $\text{ggT} (420, 90) =2 \cdot 3 \cdot 5 =30$

  • Tipps

    Gemeinsame Teiler sind Zahlen, die in beiden Teilermengen vorkommen.

    Der $\text{ggT}$, also der größte gemeinsame Teiler, ist die größte dieser Zahlen.

    Lösung

    Wir können den $\text{ggT}$ aus den Teilermengen bestimmen, indem wir die größte der Zahlen auswählen, die in beiden Teilermengen vorkommen.

    Schreiben wir die beiden Teilermengen untereinander:

    $T_{12} = \lbrace 1, 2, 3, 4, 6, 12 \rbrace$

    $T_{18} = \lbrace 1, 2, 3, 6, 9, 18 \rbrace$

    So können wir erkennen, dass beide Mengen die Zahlen $1$, $2$, $3$ und $6$ enthalten. Der größte gemeinsame Wert ist dabei $6$. Daher gilt:

    $\text{ggT}(12, 18) = 6$

  • Tipps

    Nutze die Teilermengen der beiden Zahlen oder die Primfaktorzerlegung.

    $\text{ggT}(14, 63) = 7$

    Lösung

    Um den größten gemeinsamen Teiler ($\text{ggT}$) zweier Zahlen zu bestimmen, können wir die Teilermengen der beiden Zahlen oder deren Primfaktorzerlegung nutzen.

    Mithilfe der Teilermengen der beiden Zahlen ergibt sich für die drei Beispiele:

    Beispiel 1

    $T_{9} = \lbrace 1, 3, 9 \rbrace$

    $T_{105} = \lbrace 1, 3, 5, 7, 15, 21, 35, 105 \rbrace$

    Der größte gemeinsame Wert ist $3$. Daher gilt:

    $\text{ggT}(9, 105) = 3$

    Beispiel 2

    $T_{45} = \lbrace 1, 3, 5, 9, 15, 45 \rbrace$

    $T_{154} = \lbrace 1, 2, 7, 11, 14, 22, 77, 154 \rbrace$

    Der größte gemeinsame Wert ist $1$. Daher gilt:

    $\text{ggT}(45, 154) = 1$

    Beispiel 3

    $T_{18} = \lbrace 1, 2, 3, 6, 9, 18 \rbrace$

    $T_{36} = \lbrace 1, 2, 3, 4, 6, 9, 18, 36 \rbrace$

    Der größte gemeinsame Wert ist $18$. Daher gilt:

    $\text{ggT}(18, 36) = 18$

    Mithilfe der Primfaktorzerlegung ergeben sich folgende Lösungswege:

    Beispiel 1

    $9 = 3 \cdot 3$

    $105 = 3 \cdot 5 \cdot 7$

    $\text{ggT}(9, 105) = 3$

    Beispiel 2

    $45 = 3 \cdot 3 \cdot 5$

    $154 = 2 \cdot 7 \cdot 11$

    Es gibt keine gemeinsamen Primfaktoren. Deshalb gilt:

    $\text{ggT}(45, 154) = 1$

    Beispiel 3

    $18 = 2 \cdot 3 \cdot 3$

    $36 = 2 \cdot 2 \cdot 3 \cdot 3$

    $\text{ggT}(18, 36) = 2 \cdot 3 \cdot 3 = 18$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden