30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Teilerfremde Zahlen – Einführung 05:48 min

  • Ohne Druck

    Wissenslücken schließen

    videos
  • Überall

    wiederholen und üben

    tests
  • Im eigenen Tempo

    mit Arbeitsblättern lernen

    worksheets
  • Jederzeit

    Fragen stellen

    chat
Mit Spaß

Noten verbessern

30 Tage kostenlos testen

Testphase jederzeit online beenden

Textversion des Videos

Transkript Teilerfremde Zahlen – Einführung

Hallo, da bin ich wieder, eure Sabine Blumenthal. In diesem Video lernst Du etwas über teilerfremde Zahlen. Am Ende dieses Videos kannst Du den Begriff „teilerfremd“ erklären und Du kannst selber teilerfremde Zahlen finden. Was solltest Du schon wissen: Du solltest die Grundbegriffe der Teilbarkeit natürlicher Zahlen kennen und natürlich das kleine Einmaleins beherrschen. Bevor wir uns mit teilerfremden Zahlen beschäftigen, versuchen wir mal den Begriff „teilerfremd“ zu klären. In diesem Begriff steckt zum einen das Wort „Teiler“. Was ein Teiler ist, weißt Du ja bereits. Außerdem ist das Wörtchen „fremd“ enthalten. Und „fremd“ bedeutet hier so viel wie „nicht gemeinsam“. „Teilerfremd“ könnte also bedeuten, es gibt keine gemeinsamen Teiler. Wirklich keine? Mal sehen, ob diese Vermutung stimmt. Sehen wir uns deshalb noch einmal die Teilermengen an. Diesmal aber nur die von der neun und der 16. Diese beiden Zahlen haben nur einen einzigen gemeinsamen Teiler, nämlich die eins. Und das ist dann natürlich dann auch der ggT von neun und 16. Vielleicht haben wir ja die falschen Zahlen untersucht. Schauen wir uns doch einmal Primzahlen an. Die dürften ja eigentlich keine gemeinsamen Teiler haben. Die 17 und die 29 sind Primzahlen und ihre Teilermengen bestehen deshalb natürlich nur aus jeweils zwei Teilern. Aber keine gemeinsamen Teiler stimmt nicht einmal für Primzahlen. Selbst Primzahlen haben zumindest einen gemeinsamen Teiler, nämlich die eins. Sie ist hier der einzige gemeinsame Teiler und damit natürlich auch der größte gemeinsame Teiler. Weil nun aber die eins bekanntlich ein Teiler von jeder natürlichen Zahl ist, muss unsere Vermutung, was „teilerfremd“ bedeuten könnte, wohl ein bisschen geändert werden. „Teilerfremd“ bedeutet also: Es gibt keine gemeinsamen Teiler außer der Zahl eins. Da es zu dieser Vermutung bisher noch kein Gegenbeispiel gibt, können wir dafür einen allgemeingültigen Merksatz notieren. Haben zwei natürliche Zahlen nur die Eins als gemeinsamen Teiler, so heißen diese Zahlen zueinander „teilerfremd“. Wie kannst Du zueinander teilerfremde Zahlen finden? Die erste Möglichkeit ist, die Teilermengen der Zahlen bilden und in diesen Mengen nach gemeinsamen Teilern suchen. Als zweite Möglichkeit kannst Du die Teilbarkeitsregeln anwenden und so nach möglichen gemeinsamen Teilern suchen. Hier ist für Dich eine kleine Übung dazu. Deine Aufgabe lautet: Sind die zwei Zahlen zueinander teilerfremd? Prüfe als erstes die acht und die neun. Du bildest die Teilermengen und schaust nach gemeinsamen Teilern. Die Eins ist einziger gemeinsamer Teiler. Also acht und neun sind zueinander teilerfremd. Untersuche nun die Zahlen 116 und 135. Hier kannst Du die Teilbarkeitsregeln anwenden. Du überlegst zunächst, durch welche Zahlen ist die 116 teilbar? Natürlich ist 116 wie jede Zahl durch eins teilbar. Sie ist eine gerade Zahl, also teilbar durch zwei. Ihre letzten zwei Ziffern bilden die Zahl 16, also ist 116 teilbar durch vier. Weitere Teilbarkeitsregeln lassen sich hier nicht anwenden. Wenn Du die 116 durch die gefundenen Teiler zwei und vier dividierst, erhältst Du als weitere Teiler die 29 und die 58. Der letzte Teiler ist natürlich die 116 selbst. Nun musst Du prüfen, ist 135 durch eine dieser Zahlen teilbar? Das wären ja dann gemeinsame Teiler. Die 135 ist ungerade und ihre letzten zwei Ziffern bilden die Zahl 35. Also ist 135 weder durch zwei noch durch vier teilbar. Sie lässt sich auch nicht ohne Rest durch 29 oder 58 oder 116 teilen. Nur die Eins ist ein gemeinsamer Teiler von 116 und 135. Daraus folgt, 116 ist teilerfremd zu 135. Damit sind wir bei der Zusammenfassung: Du hast den Begriff „teilerfremd“ gelernt und weißt, was er bedeutet: Zwei Zahlen haben nur die Eins als gemeinsamen Teiler. So, das war's für heute. Tschüss, bis zum nächsten Mal!

7 Kommentare
  1. alles war gut

    Von Ivanova85, vor 7 Monaten
  2. Super !!!!

    Von Elliot Saenger, vor 9 Monaten
  3. Gutes Lernvideo. Genau so soll es sein.

    Von Claudia Rudlof, vor etwa 2 Jahren
  4. Dankeeeee habs verstanden!!!

    Von Mohameduddin807, vor fast 3 Jahren
  5. hab es nicht so richtig verstanden

    Von Familie Y., vor etwa 4 Jahren
  1. danke, für alles

    Von Songuel Yapici, vor etwa 5 Jahren
  2. cool

    Von Amelie N., vor fast 7 Jahren
Mehr Kommentare

Teilerfremde Zahlen – Einführung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Teilerfremde Zahlen – Einführung kannst du es wiederholen und üben.

  • Beschreibe, was es bedeutet, wenn zwei Zahlen teilerfremd sind.

    Tipps

    Schau dir das Beispiel zweier Primzahlen an. Primzahlen sind solche Zahlen, deren Teilermenge aus genau zwei Zahlen besteht, nämlich der $1$ und der Zahl selbst.

    Primzahlen sind teilerfremd.

    Schreib dir die Teilermengen von verschiedenen Zahlen auf:

    • $T_{3}=\{1;3\}$
    • $T_{9}=\{1;3;9\}$
    • $T_{8}=\{1;2;4;8\}$
    Fällt dir etwas auf?

    Es gilt für jede beliebige natürliche Zahl $z$, dass $z:1=z$ ist.

    Lösung

    Gehe von dem Begriff „teilerfremd“ aus. Darin stecken zum einen „Teiler“ und zum anderen „fremd“. Das kannst du so verstehen, dass zwei Zahlen teilerfremd sind, wenn sie keinen gemeinsamen Teiler haben.

    Ist das wirklich so? Nein!

    Immerhin haben alle Zahlen den Teiler $1$. Mit der obigen Erklärung würde das also bedeuten, dass keine teilerfremden Zahlen geben kann.

    Die Definition teilerfremder Zahlen muss also ein wenig geändert werden:

    Haben zwei natürliche Zahlen nur die $1$ als gemeinsamen Teiler, so heißen diese Zahlen teilerfremd.

  • Gib an, warum zwei Primzahlen immer teilerfremd zueinander sein müssen.

    Tipps

    Alle Zahlen haben den gemeinsamen Teiler $1$.

    Schau dir noch einmal die Definition von „teilerfremd“ an: Haben zwei natürliche Zahlen nur den gemeinsamen Teiler $1$, so heißen sie teilerfremd.

    Lösung

    Wenn „teilerfremd“ heißen soll, dass zwei Zahlen keinen gemeinsamen Teiler haben sollten, dann wären Primzahlen nicht teilerfremd. Aber dann würden überhaupt keine teilerfremden Zahlen existieren.

    Wie jede andere Zahl auch haben Primzahlen den Teiler $1$. Primzahlen sind dadurch erklärt, dass sie genau zwei Teiler haben, nämlich die $1$ selbst und sich selbst.

    So ist zum Beispiel die Teilermenge von $17$ gegeben durch $T_{17}=\{1;17\}$ und die von $29$ durch $T_{29}=\{1;29\}$. Du siehst, beide Zahlen haben den gemeinsamen Teiler $1$ und auch nur diesen. Das bedeutet, dass $17$ und $29$ teilerfremd sind.

    Das gilt übrigens für jedes Paar Primzahlen: Zwei voneinander verschiedene Primzahlen sind immer teilerfremd.

  • Erkläre, wie du die gegebenen Zahlen darauf überprüfen kannst, ob sie teilerfremd sind.

    Tipps

    Zwei Zahlen sind teilerfremd, wenn sie ausschließlich die Zahl $1$ als gemeinsamen Teiler haben.

    Beachte die Teilbarkeitsregeln:

    • Jede gerade Zahl ist durch $2$ teilbar.
    • Jede Zahl, deren Quersumme durch $3$ ($9$) teilbar ist, ist durch $3$ ($9$) teilbar.
    • Jede Zahl, deren letzten beiden Stellen eine durch $4$ teilbare Zahl bilden, ist durch $4$ teilbar.
    • Endet eine Zahl auf $0$ oder $5$, so ist sie durch $5$ teilbar.

    Schau dir ein Beispiel für Teilermengen an:

    • $T_{12}=\{1;2;3;4;6;12\}$,
    • $T_{21}=\{1;3;7;21\}$.
    Du siehst, die beiden Teilermengen haben als größten gemeinsamen Teiler die $3$. Das bedeutet, dass $12$ und $21$ nicht teilerfremd sind.

    Lösung

    Teilerfremde Zahlen haben nur die $1$ als gemeinsamen Teiler.

    Es gibt verschiedene Möglichkeiten zu überprüfen, ob zwei Zahlen teilerfremd sind. Du kannst entweder die Teilermengen auf gemeinsame Elemente untersuchen oder Teilbarkeitsregeln verwenden. Für jede dieser Vorgehensweisen siehst du nun ein Beispiel.

    Beispiel 1: Prüfe, ob $8$ und $9$ teilerfremd sind.

    In diesem Beispiel verwendest du die Teilermengen:

    • $T_{8}=\{1;2;4;8\}$ und
    • $T_{9}=\{1;3;9\}$.
    Das einzige gemeinsame Element und damit das größte ist die $1$. Das bedeutet, dass $1$ der größte gemeinsame Teiler von $8$ und $9$ ist. Insbesondere kannst du damit schließen, dass $8$ und $9$ teilerfremd sind.

    Beispiel 2: Prüfe, ob $116$ und $135$ teilerfremd sind.

    Auch hier schreibst du zunächst eine Teilermenge auf, dieses Mal allerdings nur von einer der beiden Zahlen: $T_{116}=\{1;2;4;29;58;116\}$.

    Prüfe nun, ob $135$ durch eine dieser Zahlen, ungleich $1$, teilbar ist.

    • $2\mid 135$? Nein, da $135$ ungerade ist.
    • Damit kann $135$ sicher auch nicht durch $4$ oder $58$ oder $116$ teilbar sein.
    • Bleibt nur noch die Frage $29\mid135$? Auch hier ist ein klares „Nein!“ die Antwort. Bei der Division bleibt ein Rest, denn es ist $135:29=4$ Rest $19$.
  • Ermittle die Teilermengen und verwende diese, um zu prüfen, ob die Zahlen teilerfremd sind.

    Tipps

    Wenn der größte gemeinsame Teiler die $1$ ist, dann sind die beiden Zahlen teilerfremd.

    Zur Bestimmung der Teilermenge verwendest du Teilbarkeitsregeln:

    • Jede gerade Zahl ist durch $2$ teilbar.
    • Ist die Quersumme einer Zahl durch $3$ ($9$) teilbar, so ist die Zahl selbst durch $3$ ($9$) teilbar.
    • Endet eine Zahl auf $0$ oder $5$, so ist sie durch $5$ teilbar.
    • Endet eine Zahl auf $0$, so ist sie durch $10$ teilbar.

    Wenn du einen Teiler kennst, kannst du durch Division einen weiteren ermitteln. Schau dir hierfür ein Beispiel an:

    • $2\mid 12$
    • Es ist $12:2=6$.
    • Nun weißt du, dass $6\mid 12$ gelten muss.
    Lösung

    Marie bestimmt die Teilermengen:

    Die Teilermenge von $460$

    • $460$ ist durch $1$ teilbar.
    • Da $460$ eine gerade Zahl ist, ist sie auch durch $2$ und damit durch $460:2=230$ teilbar.
    • Weil $60$ durch $4$ teilbar ist, ist auch $460$ durch $4$ teilbar. Es ist $460:4=115$.
    • Da $460$ auf $0$ endet, sind sowohl $5$ als auch $10$ Teiler.
    • Mit $5$ ist auch $460:5=92$ Teiler und mit $10$ auch $460:10=46$.
    • $20$ und damit $460:20=23$ sind ebenfalls Teiler.
    Nun sind alle Teiler gefunden: $T_{460}=\{1;2;4;5;10;20;23;46;92;115;230;460\}$.

    Die Teilermenge von $483$

    • Wieder kannst du mit der $1$ beginnen.
    • Die Quersumme von $483$ ist gegeben durch $4+8+3=15$. Da diese durch $3$ teilbar ist, ist auch $483$ durch $3$ teilbar. So erhältst du auch den Teiler $483:3=161$.
    • Da $483=490-7$ ist, ist auch $7$ ein Teiler von $483$. Es ist $483:7=69$ ebenfalls ein Teiler von $483$.
    • Mit $3$ und $7$ ist auch $3\cdot 7=21$ ein Teiler von $483$. Division $483:21=23$ führt zu dem letzten noch fehlenden Teiler $23$.
    Damit ist $T_{483}=\{1;3;7;21;23;69;161;483\}$.

    Der größte gemeinsame Teiler

    Nun kannst du erkennen, dass $23$ in beiden Teilermengen vorkommt. Das bedeutet, dass $23$ der größte gemeinsame Teiler von $460$ und $483$ ist. Insbesondere ist dieser nicht $1$. Also sind $460$ und $483$ nicht teilerfremd.

  • Prüfe, welche der Zahlen teilerfremd zu $15$ sind.

    Tipps

    Jede der Zahlen, die durch $3$ oder $5$ teilbar ist, ist nicht teilerfremd zu $15$.

    • Eine Zahl ist durch $3$ teilbar, wenn ihre Quersumme durch $3$ teilbar ist.
    • Jede Zahl, die auf $0$ oder $5$ endet, ist durch $5$ teilbar.

    Eine der gegebenen Zahlen ist eine Primzahl. Diese ist teilerfremd zu $15$.

    Lösung

    Die Teilermenge von $15$ ist bereits vorgegeben $T_{15}=\{1;3;5;15\}$. Um festzustellen, ob eine andere Zahl teilerfremd zu $15$ ist, prüfst du, ob einer der Teiler, ungleich $1$, auch Teiler von dieser Zahl ist.

    Verwende dabei die folgenden Teilbarkeitsregeln:

    • Eine Zahl ist durch $3$ teilbar, wenn ihre Quersumme durch $3$ teilbar ist.
    • Eine Zahl, welche auf $0$ oder $5$ endet, ist durch $5$ teilbar.
    • Ist eine Zahl entweder nicht durch $3$ oder durch $5$ teilbar, so ist sie sicher auch nicht durch $15$ teilbar.
    Nun kann die Überprüfung starten.

    • Da $33$ durch $3$ teilbar ist, sind $15$ und $33$ nicht teilerfremd.
    • Es ist $34=2\cdot 17$. Also kommt weder die $3$ noch die $5$ als Teiler vor. $15$ und $34$ sind teilerfremd.
    • $35$ ist durch $5$ teilbar und somit nicht teilerfremd zu $15$.
    • $15$ und $36$ haben den gemeinsamen Teiler $3$, sind also nicht teilerfremd.
    • $37$ ist eine Primzahl und somit teilerfremd zu jeder anderen Zahl, welche nicht ein Vielfaches von $37$ ist.
    • $38=2\cdot 19$. Das bedeutet, dass $38$ weder durch $3$ noch durch $5$ teilbar ist und auch sicher nicht durch $15$. Damit sind $15$ und $38$ teilerfremd.
  • Untersuche die gegebenen Zahlen. Sind diese teilerfremd?

    Tipps

    Die Teilermenge von $222$ ist gegeben durch $T_{222}=\{1;2;3;6;37;74;111;222\}$.

    Jede Zahl, deren Quersumme durch $3$ teilbar ist, ist durch $3$ teilbar.

    Verwende $T_{242}=\{1;2;11;22;121;242\}$.

    Lösung

    In dieser Aufgabe schauen wir uns jeweils die Teilermengen an.

    • $T_{33}=\{1;3;11;33\}$
    • $T_{121}=\{1;11;121\}$
    • $T_{222}=\{1;2;3;6;37;74;111;222\}$
    • $T_{333}=\{1;3;9;37;111;333\}$
    • $T_{242}=\{1;2;11;22;121;242\}$
    Damit können wir nun verschiedene Paare dieser Zahlen untersuchen.

    • $33$ und $121$ haben den größten gemeinsamen Teiler $11$, sind also nicht teilerfremd.
    • $121$ und $222$ haben außer der $1$ keinen gemeinsamen Teiler. Sie sind damit teilerfremd.
    • $222=2\cdot 111$ und $333=3\cdot 111$. Du siehst $111$ ist sowohl Teiler von $222$ als auch von $333$. Somit sind diese beiden Zahlen nicht teilerfremd.
    • $333$ und $242$ haben nur $1$ als gemeinsamen Teiler. Sie sind also teilerfremd.
    • $33$ und $242$ haben jeweils den Teiler $11$. Sie sind nicht teilerfremd.
    • $33$ und $222$ schließlich haben einzig den gemeinsamen Teiler $1$. Sie sind teilerfremd.