Schulausfall:
sofatutor 30 Tage kostenlos nutzen

Videos & Übungen für alle Fächer & Klassenstufen

Teilermenge und Vielfachenmenge 06:13 min

Textversion des Videos

Transkript Teilermenge und Vielfachenmenge

Schweinemama Sybille ist mächtig im Stress. Ihre 12 Ferkelchen haben bald Geburtstag - wie jedes Jahr alle gleichzeitig. Um auf Ideen für die Geburtstagsfeier zu kommen, schaut sie sich alte Fotos an. Die Ferkelchen spielen gerne alle zusammen oder in Gruppen oder auch mal allein. Nur eines ist wichtig: Die Ferkelchen dürfen nicht in unterschiedlich große Gruppen eingeteilt werden - denn dann gibt es Streit. Um die möglichen Gruppenaufteilungen herauszufinden, beschäftigt sich Sybille mit dem Thema Teilermenge und Vielfachenmenge. In diesem Video wiederholen wir zunächst die Begriffe Teiler und Vielfaches und klären dann, was die Teilermenge einer Zahl und was die Vielfachenmenge einer Zahl ist. Wir beschränken uns dabei auf die natürlichen Zahlen ohne die Null. Beginnen wir mit den Teilern: Teilt man eine Zahl durch einen ihrer Teiler, bleibt kein Rest übrig. So ist zum Beispiel die Zahl 12 ohne Rest durch 1, 2, 3, 4, 6 und 12 teilbar. Diese Zahlen sind also Teiler der Zahl 12. Sybille kann ihre Ferkelchen daher in Gruppen zu 6, 4, 3 oder 2 Ferkelchen einteilen oder alle 12 Ferkelchen spielen zusammen oder jedes für sich. Durch 5, 7, 8, 9, 10 oder 11 ist 12 dagegen nicht ohne Rest teilbar. Und 12 kann erst recht nicht durch eine Zahl geteilt werden, die größer als 12 ist. Diese Zahlen sind deshalb keine Teiler der 12 und Sybille kann keine Gruppen dieser Größen bilden ohne, dass es Streit gibt. Die Zahl 12 hat deshalb nur die Teiler 1, 2, 3, 4, 6 und 12. Schauen wir uns die Divisionen noch einmal näher an: Wir sehen, dass alle sechs Teiler der Zahl 12 unter den Divisoren auftauchen. Genauso tauchen sie alle aber auch in den Ergebnissen auf. Um alle Teiler einer Zahl zu ermitteln, müssen wir also nicht jede der Divisionen durchführen. Wir beginnen mit dem Divisor 1. Dann gehen wir schrittweise zu größeren Divisoren über, bis dort eine Zahl auftaucht, die wir schon einmal im Ergebnis stehen hatten. Dann können wir uns sicher sein, dass wir alle Teiler der betreffenden Zahl ermittelt haben und wir brauchen nicht mehr weiterzurechnen. Die Teilermenge einer Zahl wird von allen ihren Teilern gebildet. Wie bei jeder anderen Menge werden die Teiler dabei in geschweifte Klammern geschrieben. Die Teilermenge wird mit einem großen T bezeichnet, an das man unten die Zahl schreibt, auf die sich die Teilermenge bezieht. Schauen wir uns noch ein Beispiel an: 60 ist ohne Rest durch 1, 2, 3, 4, 5 und 6 teilbar. Wir erhalten so die Ergebnisse 60, 30, 20, 15, 12 und 10. Dagegen ist 60 durch 7, 8 und 9 nicht ohne Rest teilbar. Und durch 10 ah, das brauchen wir nicht mehr, weil wir die 10 schon im Ergebnis stehen haben. Damit haben wir alle Teiler der 60 und können ihre Teilermenge angeben. Und wie sieht das bei den Vielfachen aus? Man erhält ein Vielfaches einer Zahl, wenn man sie mit einer beliebigen natürlichen Zahl größer Null multipliziert. Die Vielfachen von 12 sind also: 12, 24, 36, 48, und so weiter. Weil es unendlich viele natürliche Zahlen gibt, hat jede Zahl auch unendlich viele Vielfache. Die Gesamtheit aller Vielfachen einer Zahl bildet ihre Vielfachenmenge. Die Vielfachenmenge wird mit einem großen V bezeichnet, an das man unten die Zahl schreibt, auf die sich die Vielfachenmenge bezieht. Weil jede Zahl unendlich viele Vielfache hat, kann die Vielfachenmenge nicht vollständig angegeben werden. Und während die Ferkelchen Geburtstag feiern, fassen wir zusammen: Teilt man eine Zahl durch einen ihrer Teiler, bleibt kein Rest übrig. Die Teilermenge einer Zahl ist die Gesamtheit aller ihrer Teiler. Man erhält ein Vielfaches einer Zahl, wenn man sie mit einer beliebigen natürlichen Zahl größer Null multipliziert. Die Vielfachenmenge einer Zahl ist die Gesamtheit aller ihrer Vielfachen. Die Ferkelchen sind alle beschäftigt. Na, da kann Sybille endlich mal allein entspannen und GAMEPIGGY spielen.

Teilermenge und Vielfachenmenge Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Teilermenge und Vielfachenmenge kannst du es wiederholen und üben.

  • Gib die Vielfachen der Zahl $12$ an.

    Tipps

    Die Vielfachen einer Zahl bestimmst du, indem du die Zahl mit verschiedenen natürlichen Zahlen multiplizierst.

    Die Vielfachen von 7 sind zum Beispiel:

    $V_{7}=\{7;14;21;28;35;42; \dots \}$

    Da gilt:

    $7 \cdot 1=7$

    $7 \cdot 2=14$

    $7 \cdot 3=21$

    Lösung

    Die Vielfachen einer Zahl bestimmst du, indem du die Zahl mit verschiedenen natürlichen Zahlen multiplizierst. Für die Zahl $12$ erhalten wir:

    $12 \cdot 1=12$

    $12 \cdot 2=24$

    $12 \cdot 3=36$

    $12 \cdot 4=48$

    $12 \cdot 5=60$

    $12 \cdot 6=72$

    Dies können wir mit allen natürlichen Zahlen machen, es gibt also unendlich viele Vielfache.

    Also sind folgenden Zahlen keine Vielfache von $12$:

    • $\{20; 26; 44; 66\}$
    Folgende Zahlen sind Vielfache der Zahl $12$:

    • $V_{12}=\{12;24;36;48;60;72; \dots \}$
  • Bestimme die Teilermenge von $12$.

    Tipps

    Die Teilermenge einer Zahl ist die Menge an Zahlen, durch die die ursprüngliche Zahl ohne Rest teilbar ist.

    Um diese Menge zu bestimmen, teilst du diese Zahl durch alle möglichen natürlichen Zahlen, die kleiner als diese Zahl sind.

    Lösung

    Die Teilermenge einer Zahl ist die Menge an Zahlen, durch die die ursprüngliche Zahl ohne Rest teilbar ist. Um diese Menge zu bestimmen, teilst du diese Zahl durch alle möglichen natürlichen Zahlen, die kleiner als diese Zahl sind. Dann erhältst du:

    „Um die Teilermenge von $12$ zu bestimmen, teilst du $12$ durch verschiedene Zahlen:

    $12:1=12$

    $12:2=6$

    $12:4=3$

    $12:5=2~\text{Rest}~2$

    $12:6=2$

    $12:7=1~\text{Rest}~5$

    $12:8=1~\text{Rest}~4$

    $12:9=1~\text{Rest}~3$

    $12:10=1~\text{Rest}~2$

    $12:11=1~\text{Rest}~1$

    $12:12=1$“

    • Jetzt schreibst du alle Zahlen, die ohne Rest teilbar sind in eine Menge. Dann erhältst du:
    „Die Teilermenge von $12$ beträgt also:

    $T_{12}=\{1;2;3;4;6;12\}$.“

  • Ermittle, welche Zahlen diese Teilermengen haben.

    Tipps

    Du kannst die Teilermengen der Zahlen bestimmen, indem du die Zahlen nacheinander durch alle natürlichen Zahlen teilst, die kleiner als die Zahl selbst sind. Dann überprüfst du, ob die Zahlen ohne Rest teilbar sind.

    Lässt sich die Zahl durch eine Zahl teilen, die bereits das Ergebnis einer Rechnung ohne Rest war, dann hast du alle Teiler bestimmt. Die Teiler sind die Divisoren und Ergebnisse aller bisherigen Rechnungen, wo kein Rest übrig blieb.

    Die Teilermenge der $6$ ist $T_6=\{1;2; 3; 6\}$.

    Lösung

    Du kannst die Teilermengen der Zahlen bestimmen, indem du die Zahlen nacheinander durch alle natürlichen Zahlen teilst, die kleiner als die Zahl selbst sind. Dann überprüfst du, ob die Zahlen ohne Rest teilbar sind. Die Teilermenge besteht aus den Zahlen, durch die die Zahle ohne Rest teilbar ist. Für $20$ erhalten wir Folgendes:

    $20:1=20$

    $20:2=10$

    $20:3=6~\text{Rest}~2$

    $20:4=5$

    $20:5=4$

    Damit haben wir alle Teiler gefunden, denn die Zahl $5$ war bereits das Ergebnis der Rechnung zuvor. Jetzt können wir sicher sein, dass alle Teiler bestimmt wurden. Das sind die Divisoren und Ergebnisse der bisherigen Rechnungen, bei denen kein Rest übrig geblieben ist. Also erhalten wir:

    • $T_{20}=\{1;2; 4; 5; 10;20\}$
    Genauso erhalten wir für die anderen Teilermengen:

    • $T_{24}=\{1;2; 3; 4; 6; 8;12;24\}$
    Es gilt:

    $24:1=24$

    $24:2=12$

    $24:3=8$

    $24:4=6$

    $24:5=4~\text{Rest}~4$

    $24:6=4$

    Hier können wir aufhören, denn lässt sich die Zahl durch eine Zahl teilen, die bereits das Ergebnis einer Rechnung (hier die $6$) ohne Rest war, dann hast du alle Teiler bestimmt. Die Teiler sind die Divisoren und Ergebnisse aller bisherigen Rechnungen, wo kein Rest übrig blieb.

    • $T_{30}=\{1; 2; 3; 5; 6; 10;15;30\}$
    • $T_{36}=\{1;2; 3; 5;9;12;18;36\}$
  • Entscheide, zu welcher Zahl diese Vielfachen gehören.

    Tipps

    Die Vielfachen einer Zahl bestimmst du, indem du die Zahl nacheinander mit verschiedenen natürlichen Zahlen multiplizierst

    Für $6$ erhalten wir zum Beispiel:

    $6 \cdot 1 = 6$

    $6 \cdot 2 = 12$

    $6 \cdot 3 = 18$

    Wenn du die Vielfachen durch eine der Zahlen in der Mitte teilst und kein Rest übrig bleibt, dann sind diese Zahlen Vielfache voneinander.

    Lösung

    Die Vielfachen einer Zahl bestimmst du, indem du die Zahl nacheinander mit verschiedenen natürlichen Zahlen multiplizierst. Für $3$ erhalten wir zum Beispiel:

    $3 \cdot 1 = 3$

    $3 \cdot 2 = 6$

    $3 \cdot 3 = 9$

    $3 \cdot 4 = 12$

    $3 \cdot 5 = 15$

    $3 \cdot 6 = 18$

    $3 \cdot 7 = 21$

    $3 \cdot 8 = 24$

    $3 \cdot 9 = 27$

    Dies könnten wir unendlich lange durchführen. Mit diesen Überlegungen erhalten wir folgende Vielfache:

    • $V_{3}=\{6;9;18;21;27, \dots\}$
    • $V_{4}=\{8;16;28;44, \dots \}$
    • $V_{5}=\{10;25;35;55;105, \dots\}$
  • Bestimme die korrekten Aussagen zu Teiler- und Vielfachenmengen.

    Tipps

    Es gibt unendlich viele natürliche Zahlen.

    Die Teilermenge ist die Menge aller Zahlen, die die Definition eines Teilers erfüllen.

    Lösung

    Diese Aussagen sind falsch:

    „Die Vielfachen einer Zahl kannst du bestimmen, indem du sie mit verschiedenen Kommazahlen multiplizierst.“

    • Hier kannst du die Vielfache einer Zahl zu bestimmen, indem du diese Zahl mit verschiedenen natürlichen Zahlen multiplizierst.
    „Jede Zahl hat nur eine endliche Anzahl an Vielfachen.“

    • Da es unendlich viele natürliche Zahlen gibt, gibt es auch eine unendliche Anzahl an Vielfachen.
    Diese Aussagen sind richtig:

    „Wird eine Zahl durch einen ihrer Teiler geteilt, bleibt kein Rest übrig.“

    • Dies ist die Definition eines Teilers.
    „Die Teilermenge einer Zahl beschreibt alle Zahlen, durch die diese Zahl ohne Rest teilbar ist.“

    „Mengen werden mit geschweiften Klammern umschlossen.“

    • Diese sehen so aus: $\{ \}$
  • Ermittle die kleinsten gemeinsamen Vielfachen.

    Tipps

    Um das kleinste gemeinsame Vielfache zu bestimmen, musst du zunächst einige Vielfache der beiden Zahlen ermitteln. Das machst du so lange, bis ein Vielfaches bei beiden Zahlen auftaucht.

    Die Zahlen $4$ und $7$ haben folgende Vielfachenmengen:

    $V_{4}=\{4, 8,12,16,20, 24, 28, \dots\}$

    $V_{7}=\{7, 14,21,28,35, 42, \dots\}$

    Das kleinste gemeinsame Vielfache ist in diesem Fall $28$.

    Lösung

    Um das kleinste gemeinsame Vielfache zu bestimmen, ermitteln wir zunächst einige Vielfache der beiden Zahlen. Z.B.:

    $3 \cdot 1 = 3$

    $3 \cdot 2 = 6$

    $3 \cdot 3 = 9$

    $3 \cdot 4 = 12$

    $3 \cdot 5 = 15$

    Und:

    $5 \cdot 1 = 5$

    $5 \cdot 2 = 10$

    $5 \cdot 3 = 15$

    • Damit können wir das kleinste gemeinsame Vielfache der Zahlen $3$ und $5$ angeben: $15$.
    Genauso erhalten wir für die anderen Zahlen:

    • Das kleinste gemeinsame Vielfache der Zahlen $2$ und $3$ ist: $6$
    • Für $3$ und $7$ erhalten wir: $21$
    • Für $4$ und $6$ ergibt sich: $12$
    Für $12$ und $4$ erhalten wir folgende Vielfachenmengen:

    $V_{12}=\{12, 24, 36, 48, \dots\}$

    $V_{4}=\{4, 8,12,16,20, 24, \dots\}$

    Die Zahlen haben also mehrere gemeinsame Vielfache $\{12,24, \dots \}$.

    • Das kleinste gemeinsame Vielfache der beiden Zahlen beträgt: $12$.