sofatutor 30 Tage kostenlos ausprobieren

Videos & Übungen für alle Fächer & Klassenstufen

Teiler und Vielfache – Einführung 06:05 min

Textversion des Videos

Transkript Teiler und Vielfache – Einführung

Oberkopfhaut-Hauptlaus Klaus plant mit seiner lausigen Truppe den nächsten Angriff. Neue Territorien wollen erobert werden! Das Ziel: Köpfe! Und wie es sich für einen ordentlich ausgeführten Lausbefall gehört, werden die Kräfte gleichmäßig verteilt. Klaus hat sechs Läuse unter seinem Kommando. Auf drei Köpfe kann er die gut verteilen, dann landen auf jedem Kopf genau zwei Läuse. Aber bei vier Köpfen würden zwei Läuse übrig bleiben. Für die Planung des Lausbefalls muss sich Klaus deshalb gut mit Teilern und Vielfachen auskennen. In diesem Video beschränken wir uns dabei auf die natürlichen Zahlen ohne die Null. Fangen wir bei den Teilern an. Vielleicht hast du schon erraten, dass DIE etwas mit dem Geteilt-Rechnen zu tun haben. Die Zahl 6 lässt sich ohne Rest durch 6, 3, 2 und 1 teilen. Eine gleichmäßige Verteilung ist also offenbar nur bei 6 Köpfen, 3 Köpfen, 2 Köpfen oder einem Kopf möglich. Diese Zahlen heißen Teiler der Zahl 6. Auf fünf oder vier Köpfen kann Klaus seine Läuse aber nicht gleichmäßig verteilen, denn dann bleiben Läuse übrig. Die 5 und die 4 sind also keine Teiler der 6. Teilt man eine Zahl durch einen ihrer Teiler, bleibt kein Rest übrig. Jede Zahl hat sich selbst und 1 als Teiler, denn jede Zahl kann ohne Rest durch sich selbst und durch 1 geteilt werden. Daher haben alle Zahlen größer 1 mindestens zwei Teiler, die 1 hat nur einen - sich selbst. Außerdem ist der größte Teiler einer Zahl immer die Zahl selbst. Denn auf mehr als 6 Köpfe kann Klaus seine 6 Läuse nicht aufteilen, dann würden immer einige Köpfe leer ausgehen. Und das wäre doch sehr schade! Ein echter Teiler einer Zahl ist ein Teiler, der kleiner ist als die Zahl selbst. Deshalb ist die 6 zwar ein Teiler von 6, aber kein echter Teiler. Aber Klaus denkt schon weiter. Wenn er diesen Lausbefall gut organisiert, dann wird er befördert - zum Kratzinal! Eine Truppe besteht immer aus sechs Läusen. Bei zwei Truppen wären das schon 12. Bei drei Truppen 18. Und bei sieben Truppen sogar 42! Diese Zahlen heißen Vielfache der Zahl 6. Aber beispielsweise die 9 oder die 17 kommen in dieser Folge nicht vor. Wie auch viele andere Zahlen. Die sind also keine Vielfachen von 6. Man erhält ein Vielfaches einer Zahl, wenn man sie mit einer beliebigen natürlichen Zahl größer Null multipliziert. Weil es unendlich viele natürliche Zahlen gibt, hat jede Zahl auch unendlich viele Vielfache. Das kleinste Vielfache ist die Zahl selbst, in unserem Beispiel also die 6. Ein echtes Vielfaches einer Zahl ist ein Vielfaches, das größer ist als die Zahl selbst. Deshalb ist die 6 zwar ein Vielfaches von 6, aber kein echtes Vielfaches. Schauen wir uns noch einmal eine Rechnung an: 18 ist sowohl ein Vielfaches von 6 als auch von 3. Ein Produkt ist immer ein Vielfaches von jedem der Faktoren. 6 und 3 sind beides Teiler der 18. Die Faktoren sind also Teiler des Produkts. Eine ähnliche Beziehung finden wir auch bei der Division: Hier ist der Dividend Vielfaches von Divisor und Quotient. Divisor und Quotient sind Teiler des Dividenden. Fassen wir das noch einmal zusammen: Teilt man eine Zahl durch einen ihrer Teiler, bleibt kein Rest übrig. Für die 6 haben wir diese Teiler gefunden. Ein echter Teiler einer Zahl ist außerdem kleiner als die Zahl selbst. Dies sind also die echten Teiler der 6. Jede Zahl hat endlich viele Teiler. 1 und die Zahl selbst sind immer Teiler. Ein Vielfaches einer Zahl erhält man, wenn man sie mit einer beliebigen natürlichen Zahl größer Null multipliziert. Einige Vielfache der 6 sind diese hier. Ein echtes Vielfaches ist größer als die Zahl selbst. Dies sind also einige der echten Vielfachen der 6. Jede Zahl hat unendlich viele Vielfache. Das wird durch diese Punkte veranschaulicht. Dann sieht man, dass es noch mehr Vielfache gibt. Wie kommt eigentlich der Lausbefall voran? Verjuckt und aufgekratzt! Da wird die Beförderung wohl noch etwas warten müssen.

17 Kommentare
  1. cool

    Von Knaistatjana7, vor 18 Tagen
  2. Super 🙂👍

    Von Klosefamily, vor 5 Monaten
  3. ich sag nur:die idee mit dem überfall ist ziemlich gut.aber kann nich z.b. eine bank überfallen werden?

    Von Mel 3, vor 5 Monaten
  4. Danke Team Digital ! Eure Videos sind echt hilfreich und auch spannend :) :) :)
    Großes Lob !!! Weiter so.

    Von Sarah Kari, vor 5 Monaten
  5. Mathematisch in Ordnung .
    Aber "Läuse in der Grundschule" geht gar nicht !!!!

    Von Wilfried H., vor 5 Monaten
Mehr Kommentare

Teiler und Vielfache – Einführung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Teiler und Vielfache – Einführung kannst du es wiederholen und üben.

  • Bestimme die Teiler.

    Tipps

    Bei der Division durch einen Teiler bleibt kein Rest.

    $1$, $2$, $3$ und $6$ sind Teiler von $6$.

    $4$ ist kein Teiler von $6$, daher bleibt bei der Division ein Rest.

    Lösung

    Oberkopfhaut-Hauptlaus Klaus verteilt seine lausigen Truppen auf die Köpfe. Jede Truppe besteht aus $6$ Läusen und soll gleichmäßig ohne Rest auf die Köpfe verteilt werden. Das geht nicht bei jeder beliebigen Zahl von Köpfen, sondern nur bei solchen Anzahlen, die Teiler der Zahl $6$ sind. Eine Zahl ist Teiler der Zahl $6$, wenn sich $6$ ohne Rest durch diese Zahl teilen lässt. Die Teiler der Zahl $6$ sind $1$, $2$, $3$ und $6$. Die Zahlen $4$ und $5$ sind keine Teiler der Zahl $6$, da beim Teilen jeweils ein Rest bleibt. Zahlen $>6$ sind ebenfalls keine Teiler der Zahl $6$, da jeder Teiler einer Zahl höchstens so groß wie die Zahl selbst ist. Andernfalls müsste Klaus seine Läuse ja zerteilen, statt sie zu verteilen.

    Um die Aufteilung vorzunehmen, rechnet Klaus die Divisionen aus und kommt auf folgende Ergebnisse:

    • $6:3 = 2$, denn $3$ ist ein echter Teiler von $6$.
    • $6:4 = 1 \text{ Rest }2$, denn $4$ ist kein Teiler von $6$ und $6-2=4$ und $4:4=1$.
    • $6:5 = 1 \text{ Rest }1$, denn $5$ ist kein Teiler von $6$. Es ist $5:5=1$ und $6 = 5+1$.
    • $6:6 =1$, denn $6$ ist ein Teiler von $6$, auch wenn kein echter Teiler.
    $4$ kann nicht Ergebnis einer Division des Dividenden $6$ sein, da $4$ kein Teiler von $6$ ist. Der Rest $3$ kann bei Divisionen von $6$ nicht als Rest auftreten, da $3$ ein Teiler von $6$ ist.

  • Gib die Eigenschaften von Teilern an.

    Tipps

    In der Rechnung $6=2\cdot 3$ heißen $2$ und $3$ die Faktoren und $6$ das Produkt.
    In der Rechnung $6 : 2 = 3$ ist $6$ der Dividend, $2$ der Divisor und die $3$ der Wert des Quotienten.

    $3$ ist ein Teiler von $6$, aber kein Teiler von $7$, denn bei der Verteilung von $7$ Läusen auf $3$ Köpfe bleibt eine Laus übrig.

    $4$ ist ein Teiler jeder durch $4$ teilbaren Zahl, da beim Teilen dann kein Rest bleibt.

    Lösung

    Findet Klaus Division, die ohne Rest aufgeht, so sind Divisor und Quotient notwendig Teiler des Dividenden. Das ist z.B. bei der Division $6:3=2$ der Fall. Umgekehrt sind Faktoren stets Teiler des Produkts, z.B. sind $2$ und $3$ Teiler von $2 \cdot 3 =6$.

    Klaus kann auch jede Zahl durch sich selbst teilen: Hat er genauso viele Läuse wie Köpfe vor sich, so landet auf jedem Kopf eine Laus. Außerdem kann Klaus jede Zahl durch $1$ teilen: $6$ Läuse verteilt auf nur einen Kopf macht $6$ Läuse pro Kopf. Es gibt Zahlen, die nur diese beiden Teiler haben, wie etwa $2$ und $3$. Das bedeutet: Jede Zahl hat mindestens zwei Teiler (nämlich $1$ und sich selbst). Es gibt zudem Zahlen, die nicht mehr als diese beiden Teiler haben.

    Folgende Aussagen sind richtig:

    • „Jede natürliche Zahl ist Teiler von sich selbst.“ Bei der Division einer Zahl durch sich selbst ist der Quotient $1$.
    • „Faktoren, die natürliche Zahlen sind, sind Teiler ihres Produkts.“ Das Produkt entsteht durch Multiplikation der Faktoren. Daher kannst du das Produkt ohne Rest durch jeden seiner Faktoren dividieren.
    • „Der Dividend einer Divisionsaufgabe mit natürlichen Zahlen ist ein Vielfaches von Divisor und Quotient.“ Der Quotient entsteht durch die Division des Dividenden durch den Divisor. Umgekehrt kannst du Divisor und Quotienten multiplizieren und erhältst wieder den Dividenden. Dieser ist also ein Teiler sowohl des Divisors als auch des Quotienten.

    Folgende Aussagen sind falsch:

    • „Jede natürliche Zahl besitzt mindestens $3$ Teiler.“ Die Zahlen $2$, $3$, $5$, $7$, $11$ usw. sind nur durch sich selbst und durch $1$ teilbar, haben also jeweils nur zwei Teiler. Solche Zahlen nennt man Primzahlen.
    • „Produkte natürlicher Zahlen sind Teiler ihrer Faktoren.“ Umgekehrt sind die Faktoren Teiler des Produkts. Außerdem ist ein Produkt Vielfaches seiner Faktoren.
    • „Beim Dividieren einer natürlichen Zahl durch einen ihrer Teiler bleibt ein Rest übrig.“ Bleibt ein Rest übrig, so ist der Divisor kein Teiler.
  • Bestimme die vier kleinsten echten Vielfachen der gegebenen Zahlen.

    Tipps

    Ein Vielfaches einer Zahl ergibt sich, wenn du die Zahl mit einer anderen Zahl multiplizierst. Je kleiner die andere Zahl, desto kleiner ist danach auch das Vielfache.

    Das kleinste echte Vielfache einer Zahl ist das Doppelte der Zahl.

    Die vier kleinsten echten Vielfachen einer Zahl erhältst du, indem du die Zahl mit den vier kleinsten natürlichen Zahlen, die größer sind als $1$, multiplizierst.

    Lösung

    Als echte Vielfache einer Zahl bezeichnet man alle Vielfachen einer Zahl, die nicht die Zahl selbst sind. Obwohl also zum Beispiel die $2$ ein Vielfaches von $2$ ist, ist sie kein echtes Vielfaches.

    Alle echten Vielfachen einer Zahl werden wir niemals angeben können, da es davon unendlich viele gibt. Hier sind allerdings nur die vier kleinsten echten Vielfachen gesucht. Diese können wir berechnen, indem wir die jeweilige Zahl nacheinander mit $2$, $3$, $4$ und $5$ multiplizieren. Dadurch erhalten wir das Doppelte, das Drei-, das Vier- und das Fünffache der Zahl. Ein kleineres echtes Vielfaches gibt es nicht, denn dafür müssten wir die Zahl mit einer natürlichen Zahl multiplizieren, die kleiner ist als $2$. Das ist nur die $1$, doch Multiplikation mit $1$ liefert kein echtes Vielfaches, sondern die Zahl selbst!

    Damit ergeben sich für obige Zahlen die folgenden echten Vielfachen:

    • Echte Vielfache von $4$: $8\,(=2\cdot 4)$, $12\,(=3\cdot 4)$, $16\,(=4\cdot 4)$, $20\,(=5\cdot 4)$, ...
    • Echte Vielfache von $9$: $18$, $27$, $36$, $45$, ...
    • Echte Vielfache von $12$: $24$, $36$, $48$, $60$, ...
    • Echte Vielfache von $7$: $14$, $21$, $28$, $35$, ...
  • Bestimme alle echten Teiler.

    Tipps

    Ein echter Teiler einer Zahl ist ein Teiler der größer als $1$ und kleiner als die Zahl selbst ist.

    Teilst du eine Zahl durch einen ihrer Teiler, so bleibt kein Rest übrig.

    $65$ hat weniger echte Teiler als $36$, denn die einzigen echten Teiler von $65$ sind $5$ und $13$, die von $36$ sind $2$, $3$, $4$, $6$, $9$, $12$ und $18$.

    Lösung

    Vergrößert man eine Zahl, indem man sie mit einer anderen Zahl $>1$ multipliziert, so hat das Produkt mehr Teiler als die Faktoren. Aber nicht jede große Zahl hat viele Teiler. Z.B. hat die Zahl $97$ nur die Teiler $1$ und $97$.

    Die Teiler einer Zahl kannst du bestimmen, indem du ausprobierst, durch welche Zahlen sie ohne Rest teilbar ist. Außerdem ist jeder Teiler eines Teilers einer Zahl wieder ein Teiler dieser Zahl. So ist z.B. $2$ ein Teiler von $4$ und $4$ ein Teiler von $12$, daher ist auch $2$ ein Teiler von $12$.

    Hier erhältst du folgende echten Teiler:

    Teiler von $64$:

    • $32$, denn $64: 32 = 2$
    • $16$, denn $16$ ist ein Teiler von $32$ und damit auch von $64$. Direkt gerechnet ist $64:16=4$.
    • $8$ ist ein Teiler von $64$, da $8 \cdot 8 = 64$.
    • $4$ ist ebenfalls ein Teiler von $64$, denn $4$ ist der Quotient der Division $64:16$ und damit ein Teiler des Dividenden $64$.
    • $2$ ist ebenfalls ein Teiler von $64$, da $64$ eine gerade Zahl ist.
    • Die Zahlen $3$, $5$, $7$, $11$ und $25$ sind keine Teiler von $64$.
    Teiler von $17$:
    • Die Zahl $17$ hat nur die Teiler $1$ und $17$, also keine echten Teiler.
    Teiler von $75$:
    • $5$ ist ein Teiler, da $75:5=15$.
    • Damit ist auch $15$ ein Teiler von $75$, denn $15$ ist ein Quotient zu dem Dividenden $75$.
    • Die Teiler von $15$ sind ebenfalls Teiler der Vielfachen von $15$, also insbesondere Teiler von $75$. Daher ist auch $3$ ein Teiler von $75$.
    • Teilt man $75$ durch den Teiler $3$, so erhält man den weiteren Teiler $75:3 = 25$.
    • Keine gerade Zahl ist Teiler von $75$, da $75$ ungerade ist. Die Zahlen $7$, $11$ und $17$ sind ebenfalls keine Teiler von $75$.
    Teiler von $77$:
    • $11$ und $7$ sind Teiler von $77$, da $1 1 \cdot 7 = 77$ bzw. $77:11 = 7$.
    • $77$ hat keine weiteren echten Teiler: Jede Zahl zwischen $2$ und $6$ ist kein Teiler von $77$. Die Zahlen $8$, $9$ und $10$ sind ebenfalls keine Teiler von $77$. Größere Zahlen als $11$ müssen wir nicht betrachten. Denn wäre eine Zahl $>11$ ein echter Teiler von $77$, so müsste der Quotient ein echter Teiler sein, der kleiner als $77:11=7$ ist. Solche gibt es aber nicht, wie wir uns gerade überlegt haben.

  • Bestimme die Vielfachen.

    Tipps

    Die Gesamtzahl der Läuse mehrerer Truppen ist ein Vielfaches von $6$, da jede Truppe aus $6$ Läusen besteht.

    Echte Vielfache von $6$ sind z.B. $12$, $24$, $36$, $60$.

    $6 \cdot 6=36$ und $7 \cdot 6$ ist um $6$ mehr als $36$.

    Lösung

    Jede Laustruppe besteht aus $6$ Läusen. Daher ist die Anzahl der Läuse mehrerer Truppen ein Vielfaches von $6$. Klaus hat verschiedene Anzahlen von Laustruppen vor sich und bestimmt jeweils die Anzahl der Läuse:

    • Eine Truppe besteht aus $6$ Läusen, d.h. aus insgesamt $1 \cdot 6 = 6$ Läusen.
    • Zwei Truppen sind doppelt so viele wie eine Truppe, also insgesamt $2 \cdot 6 = 12$ Läuse.
    • Drei Truppen enthalten sechs Läuse mehr als zwei Truppen, das macht insgesamt $3 \cdot 6 = 18$ Läuse.
    • Stolze sieben Truppen von jeweils $6$ Läusen sind mehr, als einem auf dem Kopf lieb sein kann, nämlich $7 \cdot 6 = 42$ Läuse.
  • Bestimme den Rest bei Division.

    Tipps

    Bei der Division $27:4$ bleibt der Rest $3$, denn $24 = 6 \cdot 4$ und $27 -24 = 3$. Daher ist:

    $27:4 = 6 \text{ Rest } 3$.

    Lösung

    Bei der Division durch einen Divisor, der kein Teiler des Dividenden ist, entsteht ein Rest. Für die Division mit dem Rest bestimmst du das größtmögliche Vielfache des Divisors, das kleiner oder gleich dem Dividenden ist. Die Differenz des Dividenden zu diesem Vielfachen ist der Rest. Teilst du z.B $27:4$, so ist $24 = 6 \cdot 4$ das größte Vielfache von $4$, das nicht größer ist als $27$. Das nächste Vielfache wäre $28 = 7 \cdot 4$, aber $28>27$. Der Rest ist $27-24=3$.

    Der Rest muss immer kleiner als der Divisor sein, sonst ist ein größeres Vielfaches des Divisors kleiner oder gleich dem Dividenden. So wäre $29:4 = 6 \text{ Rest }5$ nicht richtig: In diesem Fall ist nämlich $28 = 7 \cdot 4$ das größte Vielfache von $4$, das nicht größer als $29$ ist. Daher ist $29:4 = 5\text{ Rest }1$.

    In der Aufgabe gibt es viele Divisionen mit Resten $1$, $2$, $3$ und $5$, darüber hinaus einige Divisionen ohne Rest und solche mit anderen Resten. Rechnen wir sie alle aus:

    • $4:3 = 1\text{ Rest }1$
    • $4:2=2$
    • $5:3=1\text{ Rest }2$
    • $5:4=1\text{ Rest }1$
    • $7:4=1\text{ Rest }3$
    • $7:5=1\text{ Rest }2$
    • $7:7=1$
    • $9:5=1\text{ Rest }4$
    • $12:4=3$
    • $14:9=1\text{ Rest }5$
    • $14:11=1\text{ Rest }3$
    • $19:5=3\text{ Rest }4$
    • $23:7=3\text{ Rest }2$
    • $28:9=3\text{ Rest }1$
    • $34:8=4\text{ Rest }2$
    • $41: 6=6\text{ Rest }5$
    • $42:7=6$
    • $45: 11=4\text{ Rest }1$
    • $48:9=5\text{ Rest }3$
    • $55:7=7\text{ Rest }6$