Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Quadratische Ergänzung – Übung

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.7 / 77 Bewertungen
Die Autor*innen
Avatar
Mathe-Team
Quadratische Ergänzung – Übung
lernst du in der 9. Klasse - 10. Klasse

Quadratische Ergänzung – Übung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Quadratische Ergänzung – Übung kannst du es wiederholen und üben.
  • Gib an, was du bei den Funktionsgleichungen ergänzen musst, um eine binomische Formel anwenden zu können.

    Tipps

    Das, was du ergänzt, musst du auch wieder abziehen.

    Du kannst Quadratzahlen ergänzen und abziehen, oder aber sie bereits ausgerechnet abziehen.

    Die Zahl, die du in der Klammer ergänzt, ziehst du quadriert wieder ab.

    Lösung

    Gehe beim Lösen der Aufgabe immer nach dem gleichen Prinzip vor:

    Um die Zahl herauszufinden, die du in der Klammer ergänzt, betrachtest du in der Ausgangsgleichung, zum Beispiel $f(x)=x^2+8x$, den Term, in dem $x$ vorkommt (also im Beispiel $8x$).

    Wenn du diesen Term durch $2$ und $x$ teilst, erhältst du die Zahl, die in der Klammer ergänzt wird (also im Beispiel $4$).

    Weil du dadurch der Gleichung aber die quadrierte Zahl in der Klammer hinzugefügt hast (nämlich im Beispiel $4^2$), musst du die anschließend auch wieder abziehen.

  • Benenne jeweils den Fehler bei der quadratischen Ergänzung.

    Tipps

    Achte genau auf die Vorzeichen.

    Die Zahl, die du in der Klammer ergänzt, ziehst du quadriert wieder ab.

    Die Zahl, die du ergänzt, ist immer abhängig von dem Term der Ausgangsgleichung, in dem x vorkommt.

    Lösung

    Gehe beim Lösen der Aufgabe immer nach dem gleichen Prinzip vor:

    Um die Zahl herauszufinden, die du in der Klammer ergänzt, betrachtest du in der Ausgangsgleichung, zum Beispiel $f(x)=x^2 + 6x -5$, den Term, in dem $x$ vorkommt (also im Beispiel $6x$).

    Wenn du diesen Term durch $2$ und $x$ teilst, erhältst du die Zahl, die in der Klammer ergänzt wird (also im Beispiel $3$).

    Weil du dadurch der Gleichung aber die quadrierte Zahl in der Klammer hinzugefügt hast (nämlich im Beispiel $3^2$), musst du die anschließend auch wieder abziehen.

  • Erläutere, wie du die Funktionsgleichungen jeweils in die Scheitelpunktform bringen kannst.

    Tipps

    Achte genau auf die Vorzeichen.

    Multipliziere die Klammern mit Hilfe der binomischen Formeln aus.

    Lösung

    Beim Lösen der Aufgabe kannst du nach diesem Prinzip vorgehen:

    Um eine Gleichung in die Scheitelpunktform zu bringen, wendest du die quadratische Ergänzung an. Um die Zahl herauszufinden, die du in der Klammer ergänzt, betrachtest du in der Ausgangsgleichung, zum Beispiel $f(x)=x^2+6x-4$, den Term, in dem $x$ vorkommt (also im Beispiel $6x$).

    Wenn du diesen Term durch $2$ und $x$ teilst, erhältst du die Zahl, die in der Klammer ergänzt wird (also im Beispiel $3$).

    Weil du dadurch der Gleichung aber die quadrierte Zahl in der Klammer hinzugefügt hast (nämlich im Beispiel $3^2$), musst du sie anschließend auch wieder abziehen.

    Wenn du nun noch zusammenfasst, hast du die Gleichung in der Scheitelpunktform $f(x)=a\cdot (x-b)^2+c$ dargestellt und kannst den Scheitelpunkt nun direkt ablesen:

    Der Scheitelpunkt $S$ hat die Koordinaten $S(b|c)$.

  • Bestimme die Scheitelpunkte der Parabeln.

    Tipps

    Bringe jede Funktionsgleichung in die Scheitelpunktform, indem du die quadratische Ergänzung anwendest.

    Überlege: Wie kannst du den Funktionsterm so ergänzen, dass du eine der binomischen Formeln anwenden kannst?

    Steht vor der Variable $x$ kein Faktor, so kannst du dir eine $1$ denken:

    $x=1\cdot x$.

    Die Scheitelpunktform einer Funktion lautet:

    $f(x)=a\cdot (x-b)^2+c$.

    Der Scheitelpunkt der Funktion

    $f(x)=a\cdot(x-b)^2+c$ ist $S(b|c)$.

    Lösung

    Jede Funktionsgleichung musst du erst in die Scheitelpunktform bringen, indem du quadratische Ergänzungen durchführst.

    Die Scheitelpunktform einer Funktion lautet: $f(x)=a\cdot (x-b)^2+c$.

    Davon kannst du direkt den Scheitelpunkt ablesen: Es ist $S(b|c)$.

    Was du in diesen Gleichungen ergänzen musst, kannst du folgendermaßen ermitteln:

    Wenn du den mittleren Term der Ausgangsgleichung, also den Term, in dem $x$ vorkommt, durch $2$ und durch $x$ teilst, erhältst du die Zahl, die das „b“ von $(a+b)^2$ bildet (das „a“ wird in diesem Fall immer von $x$ gebildet).

    Wenn du zum Beispiel bei $f(x)=x^2+8x-1$ den Term $8x$ erst durch $2$ und dann durch $x$ teilst, erhältst du $4$. Die Gleichung kannst du mit der binomischen Formel also zu $(x+4)^2$ vereinfachen.

    Doch die beiden Varianten sind noch nicht gleich: Du ziehst $b^2$ noch von der gesamten Gleichung ab, denn du hast es ja vorher hinzugefügt.

    $f(x)=(x+4)^2-4^2-1=(x+4)^2-17$

    Nun kannst du direkt den Scheitelpunkt ablesen:

    $S(-4|-17)$.

    Gehe für die anderen Gleichungen genauso vor.

  • Beschreibe, wie man beim Lösen einer quadratischen Gleichung mit quadratischer Ergänzung vorgeht.

    Tipps

    Sieh dir die Rechenschritte an, die von Zeile zu Zeile gemacht wurden. Was für ein Ziel steckt jeweils dahinter?

    Der letzte Schritt ist in der Rechnung nicht mehr abgebildet.

    Am Schluss führst du immer noch eine Probe durch.

    Lösung

    Der Lösungsweg hängt immer ein bisschen von der Gleichung ab.

    Hier werden im ersten Schritt alle Teile der Gleichung, die die Variable $x$ enthalten, auf der linken Seite isoliert.

    Anschließend wird die quadratische Ergänzung angewendet.

    Im dritten Schritt können auf beiden Seiten die Terme zusammengefasst werden, indem die Quadrate und die Summe berechnet werden.

    Danach kann dann die binomische Formel angewendet werden, da auf der linken Seite ein Term der Form $a^2+2ab+b^2$ vorhanden ist.

    Anschließend kann man die Wurzel ziehen und dann die Variable $x$ isolieren, um zum Schluss die Lösungen zu bestimmen.

    Abschließend solltest du immer noch eine Probe durchführen.

  • Bestimme jeweils den Scheitelpunkt der Funktionen.

    Tipps

    Bringe die einzelnen Funktionsgleichungen in die Scheitelpunktform, um den Scheitelpunkt ablesen zu können.

    Wende die quadratische Ergänzung an, um die Funktionsgleichungen in die Scheitelpunktform zu bringen.

    Von der Scheitelpunktform einer Funktionsgleichung kannst du den Scheitelpunkt S(b|c) ablesen.

    Die Scheitelpunktform lautet:

    $f(x)=a\cdot(x-b)^2+c$.

    Lösung

    Bringe die Funktionsgleichungen mit Hilfe der quadratischen Ergänzung in die Scheitelpunktform $f(x)=a\cdot(x-b)^2+c$, um den Scheitelpunkt $S(b|c)$ ablesen zu können.

    Die Funktionsgleichungen in Scheitelpunktform und die Scheitelpunkte lauten:

    • $f(x)=(x-2)^2+1$ hat den Scheitelpunkt $S(2|1)$.
    • $g(x)=(x+1)^2+2$ hat den Scheitelpunkt $S(-1|2)$.
    • $h(x)=(x-1)^2-2$ hat den Scheitelpunkt $S(1|-2)$.
    • $i(x)=(x+2)^2+1$ hat den Scheitelpunkt $S(-2|1)$.
    • $k(x)=(x-2)^2-1$ hat den Scheitelpunkt $S(2|-1)$.
    Nun kannst du mit Hilfe der bestimmten Scheitelpunkte jeder Funktionsgleichung eindeutig eine Grafik zuordnen.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.156

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.930

Lernvideos

37.078

Übungen

34.333

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden