30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Skalarprodukt 05:50 min

Textversion des Videos

Transkript Skalarprodukt

Hallo! Wir wollen das Skalarprodukt zweier Vektoren einführen. Wie wir Vektoren addieren und subtrahieren entnehmen wir der Anschauung. Wir hängen die Vektoren, die wir zum Beispiel addieren möchten hintereinander. Und der resultierende Vektor ist dann deren Summe. Doch welches Ergebnis können wir uns unter einer Multiplikation zweier Vektoren vorstellen, welches Ergebnis soll dabei herauskommen? Wieder ein Vektor wie bei der Addition oder vielleicht eine Zahl? Im Folgenden betrachten wir dazu ein Beispiel aus der Physik, dann definieren wir das Skalarprodukt, fragen nach seiner anschaulichen Bedeutung und geben eine einfache Formel zur Berechnung an. Um zu einer vernünftigen Definition eines Skalarprodukts zu gelangen, lassen wir uns von der Physik leiten. Wir betrachten einen Schlitten, der von einer konstanten Kraft F, das ist dieser Vektor, um einen Weg S, das ist dieser Vektor, verschoben wird. Dabei soll F nicht in Richtung von S zeigen, sondern mit dem Weg den Winkel φ einschließen. Welche Arbeit wird bei diesem Vorgang geleistet? Arbeit ist das Produkt aus Kraft mal Weg. Als wirkende Kraft zählt aber nur die Komponente, die in Richtung von S zeigt. Wir nennen Sie FS. Wie groß ist nun der Betrag des Vektors FS? Wir erkennen in der Abbildung ein rechtwinkliges Dreieck. An diesem gilt die trigonometrische Beziehung cos(φ) = Betrag von Vektor FS durch Betrag von Vektor F. Der Betrag von Vektor FS, also die Länge dieses Vektors, ist somit Betrag Vektor F ⋅ cos (φ). Es gilt somit, die Arbeit ist der Betrag von Vektor FS mal Betrag von Vektor S = Betrag von Vektor F ⋅ cos (φ) mal Betrag von Vektor S. Das Beispiel aus der Physik leitet uns dahin, Folgendes zu definieren: Für zwei Vektoren a und b ist das Skalarprodukt Vektor a mal Vektor b definiert als Vektor a skalar multipliziert mit Vektor b ist gleich Betrag von Vektor a mal Betrag von Vektor b mal cos (φ). Wobei φ der von Vektor a und Vektor b eingeschlossene Winkel ist. Das Ergebnis ist eine reelle Zahl, also ein Skalar. Was bedeutet dies anschaulich? Gegeben sind zwei Vektoren a und b sowie der eingeschlossene Winkel φ. Das Skalarprodukt ist gleich dem Betrag des Vektors a mal dem Betrag der Projektion von Vektor b auf Vektor a. Betrachten wir zwei beliebige Vektoren a mit den Koordinaten a1, a2 und b mit den Koordinaten b1, b2 in der Ebene, also im R2. Dann ist das Skalarprodukt Vektor a mal Vektor b ist gleich Koordinate a1 mal Koordinate b1 plus Koordinate a2 mal Koordinate b2. Das ist doch eine einfache Formel, bei der wir nicht extra Cosinus-Werte berechnen müssen. Ein Beispiel: Vektor a = (2/-1), Vektor b = (3/1). Dann ist Vektor a mal Vektor b 2 ⋅ 3 + (-1) ⋅ 1 = 6 - 1 = 5. Wir merken uns: Erstens, das Skalarprodukt zweier Vektoren a und b ist eine reelle Zahl. Zweitens, das Skalarprodukt berechnet sich wie folgt: Vektor a skalar multipliziert mit Vektor b = Betrag von Vektor a mal Betrag von Vektor b mal cos (φ). Wobei φ der von Vektor a und Vektor b eingeschlossene Winkel ist. Wenn die Vektoren a und b sich im R2 befinden und in der Koordinatenform gegeben sind, kannst du deren Skalarprodukt alternativ auch mit der Formel Koordinate a1 mal Koordinate b1 + Koordinate a2 ⋅ Koordinate b2 berechnen. Tschüss.

Skalarprodukt Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Skalarprodukt kannst du es wiederholen und üben.

  • Gib die richtigen Aussagen zum Skalarprodukt zweier Vektoren an.

    Tipps

    Wie kann man das Skalarprodukt zweier Vektoren veranschaulichen?

    Bilde Eselsbrücken: Zerlege den Begriff Skalarprodukt in die Teile Skalar und Produkt.

    Lösung

    Wir kennen zwei Definitionen, um das Skalarprodukt zweier Vektoren zu berechnen.

    Zum einen mithilfe des von den Vektoren eingeschlossenen Winkels $\alpha$:

    $\vec a \boldsymbol{\cdot} \vec b= |\vec a|\cdot |\vec b|\cdot \cos(\alpha)$, wobei $|\vec b|\cdot \cos(\alpha)$ die Projektion des Vektors $\vec b$ auf den Vektor $\vec a$ darstellt.

    Und zum anderen durch die Summe der Produkte der ersten bzw. der zweiten Koordinaten beider Vektoren:

    $\vec a \boldsymbol{\cdot} \vec b= a_1 \cdot b_1 + a_2 \cdot b_2$.

    Das Ergebnis eines Skalarprodukts zweier Vektoren ist stets ein Skalar, also eine reelle Zahl.

  • Gib den passenden Term an.

    Tipps

    Mithilfe welcher trigonometrischen Beziehung kann man im rechtwinkligen Dreieck $|\vec F_s|$ berechnen?

    $|\vec F_s|$ ist in diesem rechtwinkligen Dreieck zum Winkel $\varphi$ die Ankathete und $|\vec F|$ die Hypotenuse.

    $\cos(\varphi)= \frac{\text{Ankathete}}{\text{Hypotenuse}}$

    $\sin(\varphi)= \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$

    $\tan(\varphi)= \frac{\text{Gegenkathete}}{\text{Ankathete}}$

    Lösung

    Wir betrachten das rechtwinklige Dreieck. Gesucht ist ein Term, den wir für $|\vec F_s|$ einsetzen können. $|\vec F_s|$ stellt für den Winkel $\varphi$ die Ankathete und $|\vec F|$ die Hypotenuse dar. Wir können also die trigonometrische Beziehung aufstellen:

    $\cos(\varphi)= \frac{\text{Ankathete}}{\text{Hypotenuse}}=\frac {|\vec F_s| }{|\vec F| }$

    Diese formen wir nun nach $|\vec F_s|$ um und setzen dies in die Gleichung ein.

    $|\vec F_s| = \cos(\varphi)\cdot |\vec F|$

    Arbeit $=$ Kraft $\cdot$ Weg $= |\vec F_s| \cdot |\vec s| = |F| \cdot \cos(\varphi) \cdot |\vec s|$

  • Berechne den Winkel zwischen den beiden Vektoren.

    Tipps

    Forme die Gleichung zur Berechnung von Skalarprodukten zweier Vektoren nach $\cos(\alpha)$ um.

    Den Betrag eines Vektors $\vec{v} = \left(\begin{array}{c} v_1 \\ v_2 \end{array}\right)$ berechnet man mit:

    $|\vec v | = \sqrt{v_1^2 + v_2^2}$

    Lösung

    Das Skalarprodukt zweier Vektoren ist definiert als:

    $\vec p \boldsymbol{\cdot} \vec q= |\vec p|\cdot |\vec q|\cdot \cos(\beta)$

    Diese Gleichung formen wir nach $\cos(\beta)$ um:

    $\cos(\beta) = \frac{\vec p\boldsymbol{\cdot} \vec q}{|\vec p|\cdot |\vec q|}$

    Nun setzen wir die Vektoren $\vec{p} = \left(\begin{array}{c} 4 \\ 2 \\ -1 \end{array}\right)$ und $\vec{q}=\left(\begin{array}{c} 3 \\ 0,5 \\ -5 \end{array}\right)$ ein:

    $ \begin{align*} \cos(\beta) &= \frac{\left(\begin{array}{c} 4 \\ 2 \\ -1 \end{array}\right) \boldsymbol{\cdot} \left(\begin{array}{c} 3 \\ 0,5 \\ -5 \end{array}\right)}{\left| \left(\begin{array}{c} 4 \\ 2 \\ -1 \end{array}\right)\right| \cdot \left| \left(\begin{array}{c} 3 \\ 0,5 \\ -5 \end{array}\right)\right| } \\ \cos(\beta) &=\frac{4\cdot 3+2\cdot 0,5+(-1)\cdot (-5)}{\sqrt{4^2 +2^2 + (-1)^2}\cdot \sqrt{3^2+0,5^2+(-5)^2}} \\ \cos(\beta) &=\frac{18}{\sqrt{21}\cdot \sqrt{34,25}} =\frac{18}{\sqrt{719,25}} \approx 0,6712 \\ \end{align*} $

    Um den Winkel nun zu berechnen, wenden wir den Arkuskosinus an und erhalten:

    $\beta \approx 47,84°$

  • Berechne das Skalarprodukt.

    Tipps

    Beachte, dass aus der Summe wegen des Vorzeichens des zweiten Produkts eine Differenz geworden ist.

    Das Skalarprodukt ist definiert als $\vec a \boldsymbol{\cdot} \vec b= a_1 \cdot b_1 + a_2 \cdot b_2$.

    Lösung

    Man multipliziert jeweils die erste Koordinate beider Vektoren miteinander und addiert das Produkt der zweiten Koordinaten beider Vektoren.

    Für zwei beliebige Vektoren $a,b \in \mathbb{R^2}$ sieht die Formel dann wie folgt aus:

    $\vec a \boldsymbol{\cdot} \vec b= a_1 \cdot b_1 + a_2 \cdot b_2$.

    Wir setzen die gegebenen Koordinaten der Vektoren ein und erhalten:

    $ \left(\begin{array}{c} 2 \\ -1 \end{array}\right) \boldsymbol{\cdot} \left(\begin{array}{c} 3 \\ 1 \end{array}\right) = 2 \cdot 3 + -1 \cdot 1 = 6 - 1 = 5$.

    Ändert sich das Ergebnis, wenn wir $\vec b \boldsymbol{\cdot} \vec a$ berechnen? Nein! Das Skalarprodukt ist im reellen Vektorraum kommutativ, da wir ausschließlich addieren und multiplizieren und diese Rechenoperationen auch kommutativ sind: $a+b = b+a$ und $a \cdot b = b \cdot a$.

  • Leite das Skalarprodukt für Vektoren im dreidimensionalen Raum her.

    Tipps

    Schlussfolgere aus der Bildung des Skalarprodukts zweier Vektoren im $\mathbb{R^2}$ die Bildung des Skalarprodukts zweier Vektoren im $\mathbb{R^3}$.

    Im $\mathbb{R^2}$ multiplizieren wir jeweils die ersten und die zweiten Koordinaten beider Vektoren miteinander und addieren diese Produkte, sodass wir ein Skalar erhalten. Analog gehen wir im $\mathbb{R^3}$ vor.

    Lösung

    Wir wissen, dass das Skalarprodukt zweier Vektoren in einer Ebene definiert ist als die Summe der Produkte der jeweils ersten und zweiten Koordinaten der Vektoren $\vec a$ und $\vec b$:

    $\vec a \boldsymbol{\cdot} \vec b= a_1 \cdot b_1 + a_2 \cdot b_2$.

    Analog können wir im dreidimensionalen Raum vorgehen:

    Wir bilden die Summe der Produkte der jeweils ersten, zweiten und dritten Koordinaten der Vektoren $\vec u$ und $\vec v$ mit $\vec{u} = \left(\begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array}\right)$ und $\vec{v}=\left(\begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array}\right)$:

    $\vec u \boldsymbol{\cdot} \vec v= u_1 \cdot v_1 + u_2 \cdot v_2 + u_3 \cdot v_3$

  • Bestimme die gesuchten Größen.

    Tipps

    Beachte, dass in Aufgabe $2$ eine Gradzahl gesucht ist.

    Im dreidimensionalen Raum berechnet man das Skalarprodukt analog zum zweidimensionalen Raum.

    Lösung

    Das Skalarprodukt der Vektoren $\vec{a} = \left(\begin{array}{c} 8 \\ -2 \end{array}\right)$ und $\vec{b}=\left(\begin{array}{c} 6 \\ 9 \end{array}\right)$

    berechnen wir mithilfe der Formel: $\vec a \boldsymbol{\cdot} \vec b= a_1 \cdot b_1 + a_2 \cdot b_2$:

    $\left(\begin{array}{c} 8 \\ -2 \end{array}\right) \boldsymbol{\cdot} \left(\begin{array}{c} 6 \\ 9 \end{array}\right)= 8 \cdot 6 + -2 \cdot 9= 48 - 18 = 30$.

    Auf dieselbe Weise berechnen wir auch das Skalarprodukt von

    $\left(\begin{array}{c} 5 \\ -3 \end{array}\right) \boldsymbol{\cdot} \left(\begin{array}{c} 4 \\ 2 \end{array}\right) = 5 \cdot 4 + -3 \cdot 2= 20 - 6 = 14$.

    Um das Skalarprodukt der Vektoren $\vec{u} = \left(\begin{array}{c} 2 \\ 1 \\ 0 \end{array}\right)$ und $\vec{v}=\left(\begin{array}{c} 3 \\ -6 \\ 4 \end{array}\right)$

    im $\mathbb{R^3}$ zu berechnen, verwenden wir die folgende Formel: $\vec u \boldsymbol{\cdot} \vec v= u_1 \cdot v_1 + u_2 \cdot v_2 + u_3 \cdot v_3$ .

    Wir setzen die Werte ein und erhalten:

    $\left(\begin{array}{c} 2 \\ 1 \\ 0 \end{array}\right) \boldsymbol{\cdot} \left(\begin{array}{c} 3 \\ -6 \\ 4 \end{array}\right)= 2 \cdot 3 + 1 \cdot (-6) + 0 \cdot 4 = 0$.

    Wenn das Skalarprodukt Null ergibt, wissen wir, dass der Winkel zwischen den beiden Vektoren ein rechter Winkel ist, also $90°$ beträgt. Denn nur, wenn der Vektor $\vec v$ senkrecht zu $\vec u$ steht, ist der Betrag der Projektion des Vektors $\vec v$ auf den Vektor $\vec u$, also $|\vec u|\cdot |\vec v|\cdot \cos(90°) = 0$.