30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Flächeninhalt von Dreiecken berechnen 05:03 min

Textversion des Videos

Transkript Flächeninhalt von Dreiecken berechnen

Auf ihrem Flug über die Stadt Polygon entdeckt Beraterin Beate eine Möglichkeit, der Skyline der Stadt ein wenig mehr Pfiff zu verleihen. Die Dächer von Polygons dreieckigen Wolkenkratzern sind so öde. Was für eine Verschwendung von hervorragenden Werbeflächen! Also schlägt Beate der Bürgermeisterin von Polygon ihren Plan vor: Warum nicht diese hässlichen, alten Dächer in himmelsstürmende Willkommensschilder für Touristen verwandeln? Für passgenaue Werbeflächen müssen wir zunächst die Größe der Dächer ermitteln, also die Flächeninhalte von Dreiecken. Dieses Dach zum Beispiel hat die Form eines Dreiecks. Schauen wir uns doch zunächst einmal ein ganz spezielles Dreieck an. Hat ein Dreieck einen Winkel von exakt 90 Grad, nennen wir es ein rechtwinkliges Dreieck. Es sieht aus wie ein Rechteck, das man in der Mitte mit einer Diagonalen durchgeschnitten hat. Wie würdest du also den Flächeninhalt eines rechtwinkligen Dreiecks berechnen? Da rechtwinklige Dreiecke halben Rechtecken entsprechen, berechnen wir ihren Flächeninhalt als "ein Halb mal 'Grundseite mal Höhe'". Aber wie helfen diese Informationen dabei, den Flächeninhalt unseres Dreiecks zu berechnen? Schau es dir einmal genau an: Siehst du einen Weg, dieses Dreieck in mehrere rechtwinklige zu zerlegen? Wenn wir hier eine Senkrechte auf die Grundseite zeichnen, erhalten wir zwei rechtwinklige Dreiecke. Diese Senkrechte ist die Höhe beider rechtwinkligen Dreiecke und gleichzeitig die Höhe des Dreiecks, weil es senkrecht auf der Grundseite liegt und durch den gegenüberliegenden Punkt geht. Für den Flächeninhalt dieses Dreiecks addieren wir also die Flächeninhalte der beiden rechtwinkligen Dreiecke. Beginnen wir mit dem linken: Welche Werte sollten wir für die Länge der Grundseite und für die Höhe verwenden? Die Länge der Grundseite beträgt 20 Meter. Und die Strecke, die wir senkrecht auf diese Grundseite gezeichnet haben, ist 10 Meter lang, also ist das unsere Höhe. Wir multiplizieren und erhalten einen Flächeninhalt von 100 Quadratmetern. Das rechte Dreieck hat eine Grundseitenlänge von 4 Metern und eine Höhe von 10 Metern, was einen Flächeninhalt von 20 Quadratmetern ergibt. Wenn wir die Flächeninhalte beider Dreiecke addieren, erhalten wir einen Gesamtflächeninhalt von 120 Quadratmetern. Bevor wir weitermachen, schauen wir mal, ob wir eine allgemeine Formel finden, die uns die Arbeit in Zukunft erleichtert. Wie du siehst, hat die Grundseite des Dreiecks eine Länge von 24 Metern. Wenn wir das und die Höhe von 10 Metern in unsere Formel für den Flächeninhalt einsetzen, erhalten wir dieselbe Lösung. Das bedeutet, dass der Flächeninhalt bei jedem Dreieck immer gleich einhalb Grundseite mal Höhe ist egal ob rechtwinklig oder nicht. Um zu verstehen, warum das funktioniert, zeichnen wir ein Rechteck um unser Dreieck. So erhalten wir vier rechtwinklige Dreiecke. Die beiden rechtwinkligen Dreiecke links ergeben zusammen ein Rechteck und die beiden Dreiecke rechts bilden ein zweites Rechteck. Unser ursprüngliches Dreieck nimmt also genau die Hälfte der Fläche eines Rechtecks mit gleicher Grundseitenlänge und Höhe ein, was wir hier als zwei identische Dreiecke sehen. Deswegen lässt sich der Flächeninhalt jedes beliebigen Dreiecks als einhalb mal Grundseite mal Höhe berechnen. Behalten wir das im Kopf, wenn wir den Flächeninhalt des zweiten Daches berechnen. Wir müssen also wieder die Länge der Grundseite und die Höhe dieses Dreiecks bestimmen. Welchen Wert sollten wir für die Grundseitenlänge verwenden? Diese gesamte Seite ist unsere Grundseite, also müssen wir 18 Meter und 22 Meter addieren und bekommen so eine Gesamtlänge von 40 Metern. Das können wir in unsere Formel als Grundseitenlänge 'g' einsetzen. Und welchen Wert sollten wir für die Höhe verwenden? Bei der Höhe eines Dreiecks ist es wichtig, dass die beiden Geraden senkrecht aufeinander stehen und die Höhe durch den Gegenüberliegenden Punkt geht. Unsere Höhe h ist also 24 Meter. Wir multiplizieren und erhalten für das Dach einen Flächeninhalt von 480 Quadratmetern. Während die Willkommensschilder gebaut werden, fassen wir noch mal zusammen. Man berechnet den Flächeninhalt eines Dreiecks mit der Formel einhalb mal Grundseite mal Höhe. Das funktioniert, weil sich jedes Dreieck aus zwei rechtwinkligen Dreiecken zusammensetzt, die wiederum jeweils die Hälfte eines Rechteckes sind. Und denk dran: Wenn du die Grundseite und die Höhe eines beliebigen Dreiecks bestimmst, musst du darauf achten, dass diese senkrecht aufeinander stehen. Achte außerdem darauf, dass du eine vollständige Seite als Grundseite nimmst. Wow, diese neuen Schilder werden den Tourismus in Polygon mächtig anheizen. Was hier wohl abgeht, wenn sich erst mal rumspricht, dass in Polygon jeder willkommen ist wirklich jeder.

2 Kommentare
  1. Schönes Video:)

    Von Anastasia Markela, vor 21 Tagen
  2. Super erklärt! Sehr anschaulich!

    Von Greta J., vor etwa einem Monat

Flächeninhalt von Dreiecken berechnen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Flächeninhalt von Dreiecken berechnen kannst du es wiederholen und üben.

  • Bestimme den Flächeninhalt der Dreiecke.

    Tipps

    Für den Flächeninhalt eines Dreiecks gilt die Formel:

    $A = \frac{\text{Grundseite} \cdot \text{Höhe}}{2}$

    Die Grundseite ist eine Seite des Dreiecks und die Höhe steht senkrecht auf der Grundseite.

    Der Flächeninhalt dieses Dreiecks beträgt:

    $A = \frac{1}{2} \cdot 12~\text{cm} \cdot 4~\text{cm} = 24~\text{cm}^2$

    Lösung

    Zur Berechnung des Flächeninhaltes von Dreiecken kannst du folgende Formel verwenden:

    $A = \frac{\text{Grundseite} \cdot \text{Höhe}}{2}$

    Meistens bezeichnet man die Grundseite mit $g$ und die Höhe mit $h$. Dann sieht die Formel so aus:

    $A = \frac{1}{2} \cdot g \cdot h$

    Als Grundseite kannst du jede beliebige Seite des Dreiecks einsetzen. Die Höhe ist dann der senkrechte Abstand der Grundseite zum gegenüberliegenden Eckpunkt, d.h. die Höhe steht senkrecht auf der Grundseite und verläuft durch den gegenüberliegenden Eckpunkt.

    Für die Dreiecke im Bild findest du dann folgende Rechnungen:

    1. Das Dreieck ist rechtwinklig. Die aufeinander senkrechten Seiten können wir als Grundseite und Höhe verwenden und erhalten: $A = \frac{1}{2} \cdot 20~\text{m} \cdot 10~\text{m} = 100~\text{m}^2$
    2. Dieses Dreieck ist ebenfalls rechtwinklig. Wir erhalten daher für den Flächeninhalt: $A = \frac{1}{2} \cdot 4~\text{m} \cdot 10~\text{m} = 20~\text{m}^2$
    3. Dieses Dreieck ist nicht rechtwinklig. Seine Grundseite ist $24~\text{m}$ lang, die zugehörige Höhe $10~\text{m}$. Der Flächeninhalt ist daher: $A = \frac{1}{2} \cdot 24~\text{m} \cdot 10~\text{m} = 120~\text{m}^2$
    4. Das rechtwinklige Dreieck hat die Grundseite $18~\text{m}$ und die Höhe $24~\text{m}$ (oder umgekehrt). Der Flächeninhalt beträgt daher: $A = \frac{1}{2} \cdot 18~\text{m} \cdot 24~\text{m} = 216~\text{m}^2$
    5. Dieses Dreieck ist nicht rechtwinklig. Von den bezeichneten Strecken stehen nur zwei aufeinander senkrecht. Die Grundseite beträgt $40~\text{m}$, die Höhe $24~\text{m}$. Daher ist der Flächeninhalt: $A = \frac{1}{2} \cdot 40~\text{m} \cdot 24~\text{m} = 480~\text{m}^2$.
  • Bestimme die Grundseite, die Höhe und alle rechten Winkel.

    Tipps

    Jedes Dreieck besitzt höchstens einen rechten Winkel.

    Die Grundseite ist diejenige Seite des Dreiecks, auf der die Höhe senkrecht steht.

    Spitze Winkel sind keine rechten Winkel.

    Lösung

    Zur Berechnung des Flächeninhalts eines Dreiecks verwendet man eine Grundseite und die zugehörige Höhe. Der Ausdruck „Grundseite“ ist nur ein Platzhalter, in den du jede beliebige Seite des Dreiecks einsetzen kannst. Eine Höhe ist eine Strecke von einem Eckpunkt des Dreiecks senkrecht auf die gegenüberliegende Seite, welche dann als Grundseite bezeichnet wird. Jedes Dreieck hat drei Höhen.

    Mit folgender Formel kannst du den Flächeninhalt eines Dreiecks berechnen:

    $A = \frac{\text{Grundseite} \cdot \text{Höhe}}{2}$

    Hier kannst du jede beliebige Seite und die dazugehörige Höhe einsetzen. Ist nur eine Höhe bekannt, wie hier im Bild, so ist die Grundseite also nicht beliebig, sondern die einzige Seite des Dreiecks, auf der die Höhe senkrecht steht.

    Rechte Winkel kennst du von Fenstern, Türen, Hauswänden, Schulheften usw. Jedes Dreieck hat höchstens einen rechten Winkel. Zeichnest du in ein Dreieck, das weder rechtwinklig noch stumpfwinklig ist, eine beliebige Höhe ein, so teilt sie das Dreieck in zwei rechtwinklige Dreiecke. Im Bild sind daher die beiden Winkel am Fußpunkt der Höhe die einzigen rechten Winkel. Bei rechtwinkligen Dreiecken gilt das nur, wenn du die Höhe wählst, die durch den rechten Winkel verläuft, denn die beiden anderen Höhen sind Seiten des Dreiecks und teilen das Dreieck nicht in zwei Hälften. Ist das Dreick stumpfwinklig, so teilt nur die Höhe durch den stumpfen Winkel das Dreieck in zwei rechtwinklige Dreiecke. Die beiden anderen Höhen verlaufen außerhalb des Dreiecks.

  • Beschreibe die Bestimmung des Flächeninhalts von Dreiecken.

    Tipps

    Teilst du ein Rechteck längs einer Diagonalen, so sind die beiden Hälften deckungsleich.

    Deckungsgleiche Dreiecke haben denselben Flächeninhalt.

    Zeichnest du in einem Dreieck eine Höhe ein, so heißt die Seite, auf der die Höhe senkrecht steht, Grundseite.

    Lösung

    Beate überlegt sich, wie sie den Flächeninhalt von Dreiecken bestimmen kann. Sie beginnt mit einem Dreieck, das einen rechten Winkel enthält. Solche Dreiecke heißen rechtwinklige Dreiecke. Beate überlegt sich, dass ein rechtwinkliges Dreieck genau einen rechten Winkel besitzt. Denn die Summe der Innenwinkel in einem Dreieck beträgt $180^\circ$. Da bei einem Dreieck kein Winkel $0^\circ$ oder kleiner ist, kann höchstens eine Winkel $90^\circ$ betragen, die beiden anderen Winkel müssen kleiner (also „spitz“) sein.

    Beate fällt auf, dass jedes rechtwinklige Dreieck aus einem Rechteck entsteht, indem man das Rechteck längs einer Diagonalen halbiert. Um das Rechteck zu finden, kann Beate das Dreieck verdoppeln und eine Kopie um $180^\circ$ drehen. Die beiden Dreiecke ergeben dann zusammen das Rechteck. Der Flächeninhalt des Dreiecks ist dann genau halb so groß wie der Flächeninhalt des Rechtecks.

    Beate hat eine Idee, wie sie ein beliebiges Dreieck in zwei rechtwinklige Dreiecke zerlegen kann: Sie zeichnet dazu von einem Eckpunkt des Dreiecks aus eine Senkrechte auf die gegenüberliegende Seite. Eine solche Senkrechte heisst Höhe des Dreiecks. Ist das Dreieck nicht stumpfwinklig, so teilt jede Höhe das Dreieck in zwei rechtwinklige Dreiecke. Bei einem stumpfwinkligen Dreieck teilt die Höhe auf die längste Seite ebenfalls das Dreieck in zwei rechtwinklig Dreiecke. Die beiden anderen Höhen verlaufen außerhalb des Dreiecks.

    Da die beiden so entstandenen Teildreiecke einander nicht überlappen und zusammen das ursprüngliche Dreieck ergeben, ist dessen Flächeninhalt die Summe der Flächeninhalte beider rechtwinkliger Dreiecke.

    Die rechtwinkligen Dreiecke kann Beate wieder zu Rechtecken ergänzen. Diese beiden Rechtecke ergeben zusammen ein neues Rechteck. Du siehst es hier im Bild. Eine Seite dieses größeren Rechtecks ist die Grundseite des Dreiecks. Die andere Seite ist parallel zu der Höhe des Dreiecks. Daher ist der Flächeninhalt des Dreiecks genau die Hälfte des Flächeninhalts des großen Rechtecks.

  • Leite die Formel für den Flächeninhalt her.

    Tipps

    Ein Dreieck mit den Seiten $a$, $b$ und $c$ und den zugehörigen Höhen $h_a$, $h_b$ und $h_c$ hat den Flächeninhalt:

    $A = \frac{1}{2} \cdot a \cdot h_a = \frac{1}{2} \cdot b \cdot h_b = \frac{1}{2} \cdot c \cdot h_c$

    Die Seite $c$ ist die Differenz der Seiten $e$ und $f$, d.h.:

    $c = e-f$

    Lösung

    Beate denkt über die Berechnung des Flächeninhalts von Dreiecken nach. Sie verwendet dafür die allgemeine Formel:

    $A = \frac{1}{2} \cdot g \cdot h$

    In diese Formel kann sie als Grundseite $g$ eine beliebige Seite des Dreiecks einsetzen. Sie muss dann aber zu dieser Grundseite die zugehörige Höhe einsetzen. Diese Höhe ist durch die Wahl der Grundseite eindeutig festgelegt. Entscheidet sich Beate, den Flächeninhalt mit der Grundseite $g = c$ zu berechnen, so ist die zugehörige Höhe $h_c$.

    Da Beate in die Formel für den Flächeninhalt jede beliebige Seite und die dazu passende Höhe einsetzen kann, ist der Flächeninhalt unabhängig von der Wahl der Grundseite. Mit den im Bild gegebenen Seiten und Höhen ist die Berechnung des Flächeninhalts mit der Seite $a$ und der Höhe $h_a$ oder der Seite $c$ und der Höhe $h_c$ möglich. Es gilt also:

    $A = \frac{1}{2} \cdot a \cdot h_a = \frac{1}{2} \cdot c \cdot h_c$

    Beate hat ein stumpfwinkliges Dreieck gezeichnet. Sie will sich durch ein geometrisches Argument überzeugen, dass die Formel auch in diesem Fall für jede beliebige Seite anwendbar ist. Sie wählt als Grundseite die Seite $c$. Die Höhe vom gegenüberliegenden Eckpunkt trifft nicht die Seite $c$, sondern nur ihre Verlängerung. Der Höhenfußpunkt $S$ ist der Schnittpunkt der Höhe mit der Verlängerung der Seite $c$. Mit diesem Punkt $S$ erhält Beate die beiden neuen Dreiecke $\Delta_{SAC}$ und $\Delta_{SBC}$. Beide sind rechtwinklig. Um in beiden Dreiecken die Strecke $\overline{SC}$ als Höhe verwenden zu können, muss Beate in $\Delta_{SBC}$ die Seite $e=\overline{SB}$ als Grundseite wählen und im Dreieck $\Delta_{SAC}$ die Seite $f=\overline{SA}$. Nun ist der Flächeninhalt des Dreiecks $\Delta_{ABC}$ die Differenz der Flächeninhalte der rechtwinkligen Dreiecke $\Delta_{SBC}$ und $\Delta_{SAC}$. Für diese Flächeninhalte verwendet Beate folgende Formeln:

    • $A(\Delta_{SBC}) = \frac{1}{2} \cdot e \cdot h_c$
    • $A(\Delta_{SAC}) = \frac{1}{2} \cdot f \cdot h_c$
    Der Flächeninhalt des Dreiecks $\Delta_{ABC}$ ist daher:

    • $A(\Delta_{ABC}) = A(\Delta_{SBC}) - A(\Delta_{SAC}) = \frac{1}{2} \cdot e \cdot h_c - \frac{1}{2} \cdot f \cdot h_c$
    Beate kann $\frac{1}{2} \cdot$ und die Höhe $h_c$ ausklammern und die Gleichung $c = e-f$ einsetzen und erhält:

    • $A(\Delta_{ABC}) = \frac{1}{2} \cdot (e-f) \cdot h_c = \frac{1}{2} \cdot c \cdot h_c$
  • Bestimme die Flächeninhalte.

    Tipps

    Zur Flächenberechnung eines Dreiecks müssen immer eine Höhe sowie die Seite, auf die Höhe senkrecht steht, berücksichtigt werden.

    $A= \frac{1}{2} \cdot g \cdot h$

    Lösung
    • $\frac{1}{2} \cdot 2,5 \text{ cm} \cdot 14\text{ cm} = 17,5 \text{ cm}^2 $
    Die Höhe steht hier senkrecht auf der Seite, die $14\text{ cm}$ lang ist. Daher sind nur diese beiden Größen zu beachten.
    • $\frac{1}{2} \cdot 7 \text{ cm} \cdot 5,5\text{ cm} = 19,25 \text{ cm}^2$
    • $\frac{1}{2} \cdot 7,5 \text{ cm} \cdot 6\text{ cm} = 22,5 \text{ cm}^2$
    • $\frac{1}{2} \cdot 4 \text{ cm} \cdot 7,75\text{ cm} = 15,5 \text{ cm}^2$
  • Berechne den Flächeninhalt.

    Tipps

    Verwendest du als Grundseite des Dreiecks die Seite $b$, so lautet die Formel für den Flächeninhalt:

    $A = \frac{1}{2} \cdot b \cdot h_b$

    Bei einem rechtwinkligen Dreieck kannst du die beiden Seiten, die den rechten Winkel bilden, als Grundseite und Höhe verwenden.

    Der von den Seiten $a$ und $b$ gebildete Winkel ist $\gamma$. Ist $\gamma = 90^\circ$ und $a= b = 3$, so ist der Flächeninhalt:

    $A = \frac{1}{2} \cdot 3 \cdot 3 = 4,5$

    Lösung

    Den Flächeninhalt eines Dreiecks kannst du mit der folgenden Formel berechnen:

    $A = \frac{\text{Grundseite} \cdot \text{Höhe}}{2}$

    Als Grundseite kannst du eine beliebige Seite $a$, $b$ oder $c$ des Dreiecks einsetzen. Als Höhe musst du dann die dazu passende Höhe verwenden. Für den Flächeninhalt erhältst du dann die Formel:

    $A = \frac{1}{2} \cdot a \cdot h_a = \frac{1}{2} \cdot b \cdot h_b = \frac{1}{2} \cdot c \cdot h_c$

    Ist das Dreieck rechtwinklig, so kannst du die beiden Seiten, die den rechten Winkel bilden, als Grundseite und Höhe verwenden, egal in welcher Reihenfolge. So erhältst du folgende Zuordnungen:

    Flächeninhalt $A = 16$:

    • $b=c=8$, $\alpha = 90^\circ$. Denn $A = \frac{1}{2} \cdot b \cdot c = \frac{1}{2} \cdot 8 \cdot 8 = 32$.
    • $a = 4$, $h_a = 8$. Denn $A = \frac{1}{2} \cdot 4 \cdot 8 = 16$.
    • $c = 5$, $h_c = 6,4$. Denn $A = \frac{1}{2} \cdot 5 \cdot 6,4 = 16$.
    Flächeninhalt $A = 48$:

    • $a = 5,\overline{3}$, $h_a = 18$. Denn $A = \frac{1}{2} \cdot 5,\overline{3} \cdot 18 = 48$.
    • $c = 3,2$, $h_c = 30$. Denn $A = \frac{1}{2} \cdot 3,2 \cdot 30 = 48$.
    • $a = 8$, $b = 12$, $\gamma = 90^\circ$. Denn $A = \frac{1}{2} \cdot 8 \cdot 12 = 48$.
    Flächeninhalt $A = 12,5$:

    • $c =5$, $h_c = 5$. Denn $A = \frac{1}{2} \cdot 5 \cdot 5 = 12,5$.
    • $a=c=5$, $\beta = 90^\circ$. Denn $A = \frac{1}{2} a \cdot c = \frac{1}{2} \cdot 5 \cdot 5 = 12,5$.
    • $b = 20$, $h_b = 2,5$. Denn $A = \frac{1}{2} \cdot 20 \cdot 2,5 = 25$.
    Flächeninhalt $A = 27$:

    • $c = 12$, $h_c = 4,5$. Denn $A = \frac{1}{2} \cdot 12 \cdot 4,5 = 27$.
    • $b=13,5$, $h_b = 4$. Denn $A = \frac{1}{2} \cdot 13,5 \cdot 4 = 27$.
    • $c=9$, $h_c = 6$. Denn $A = \frac{1}{2} \cdot 9 \cdot 6 = 27$.