30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Dreiecksungleichung – Erklärung 05:00 min

Textversion des Videos

Transkript Dreiecksungleichung – Erklärung

Die Forscherin Diana Jones stürzt sich in ein neues Abenteuer. Eine unerforschte Höhle! Du fragst dich, was es in dieser Höhle wohl Spannendes zu entdecken gibt? Na dann Stirnlampe an und erster Höhlencheck! Ohhh da glitzert ja etwas! Da muss Diana hin! Es ist zwar ganz schön weit weg, aber SO weit sollte ihr Sicherungsseil gerade noch reichen. Sie muss nur entlang der kürzesten Entfernung, also HIER ENTLANG klettern. Aber beim Klettern nicht vergessen: immer den Sicherungshaken einschlagen! Oh... so ein Mist! Aber für Diana ist nichts unmöglich..oder vielleicht doch? Kann sie mit ihrem Seil auch um das Loch herum, also hier entlang, zu ihrem Ziel gelangen? Ob die Seillänge für diesen Weg reicht, finden wir mit der Dreiecksungleichung heraus. Wir betrachten das Dreieck ABC. Das funkelnde Etwas liegt im Punkt C. Der ursprüngliche Weg, für den das Seil gerade so gereicht hätte, entspricht der Seitenlänge b. Aber aufgrund der eingebrochenen Höhlenwand muss Diana nun entlang dieses Weges klettern. Diese Entfernung entspricht der Summe aus den Längen der Seiten c und a. Reicht hierfür die Seillänge ebenfalls aus? Nein, denn in allen Dreiecken gilt immer die Dreiecksungleichung. Diese besagt, dass die Summe zweier Seitenlängen eines Dreiecks größer ist als die übrig bleibende dritte Seitenlänge - also ist auch "a plus c größer als b". Ebenso ist auch "a plus b größer als c" sowie "b plus c größer als a". Die Summer zweier Seitenlängen ist immer größer als die übrige Seite. Überprüfen wir die Dreiecksungleichung doch mal an einem Zahlenbeispiel. Ein Dreieck hat die Seitenlängen a gleich 4, b gleich 7 und c gleich 8. Ist hier die Dreiecksungleichung wirklich für alle drei Seiten erfüllt? Die Summe aus den Seitenlängen a und b ist 11 - also größer als c gleich 8. Genauso ist 7 plus 8 größer als 4 und 8 plus 4 größer als 7. Diese Ungleichung kannst du aber auch umkehren. Meinst du, man kann aus drei beliebigen Seitenlängen immer ein Dreieck konstruieren? Nein – wenn die Dreiecksungleichung NICHT erfüllt ist, kann das nicht funktionieren. Du musst also überprüfen, ob die Summe der beiden kürzeren Seiten größer ist als die längste Seite. Können die Seiten a gleich 5, b gleich 3 und c gleich 7 ein Dreieck bilden? Ja, denn die Summe der beiden kürzeren Seiten a und b entspricht 8 und diese ist größer als 7. Die beiden anderen Kombinationen sind dann immer erfüllt: 7 und 5 ist größer als 3 und 7 plus 3 ist größer als 5. Anders ist es, wenn die Seiten a gleich 10, b gleich 3 und c gleich 4 gegeben sind. Hier ist die Summe der beiden kürzeren Seiten gleich 3 und 4 kleiner als 10. Somit erfüllen diese Seiten nicht die Dreiecksungleichung und können demnach kein Dreieck bilden. Also: die Zusammenfassung zum Thema Dreiecksungleichung. Die Dreiecksungleichung besagt, dass die Summe zweier Seiten eines Dreiecks stets größer ist als die übrige dritte Seite. Sie gilt ausnahmslos für alle beliebigen Dreiecke. Du kannst mit ihr also auch überprüfen, ob drei gegebene Seitenlängen ein Dreieck bilden können. Hierzu muss die Summe der beiden kürzeren Seiten größer sein als die längste Seite. Ist sie nicht größer, sondern genauso groß wie die längste Seite, dann wird das Dreieck aus den drei Seiten zu einer Strecke. Aber nun Schluss mit der Theorie – ob Diana ihr Ziel erreicht hat? Das Seil reicht einfach nicht! Was ist das? Jetzt wird Dianas Aufenthalt ungleich gruseliger.