Seiten und Winkel im Dreieck
Zahlen und Winkel im Dreieck verstehen! Der Zwergenmützenmacher kennt sich aus, weil er Seiten und Winkel im Dreieck beherrscht. Erfahre, wie die Seitenlängen und Winkel in verschiedenen Dreiecken zusammenhängen. Interessiert? Dies und vieles mehr wird im Video erklärt!
- Seite – Winkel – Beziehung im Dreieck
- Seiten im Dreieck – Eigenschaften
- Winkel im Dreieck – Eigenschaften
- Gleichschenkliges Dreieck
- Gleichseitiges Dreieck

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Aufbau von Dreiecken

Dreiecksarten

Umfang von Dreiecken

Flächeninhalt von Dreiecken berechnen

Flächeninhalt von rechtwinkligen Dreiecken

Seiten und Winkel im Dreieck

Innenwinkelsummen von Dreiecken

Innenwinkel und Außenwinkel von Dreiecken

Basiswinkelsatz – Erklärung und Umkehrung

Fehlende Größen im Dreieck berechnen

Dreiecksungleichung – Erklärung

Dreiecke aus gegebenen Angaben zeichnen

Flächeninhalt Dreieck, Parallelogramm und Trapez – Übungen
Seiten und Winkel im Dreieck Übung
-
Beschreibe die Eigenschaften von Dreiecken.
TippsEin Dreieck mit zwei gleich langen Seiten heißt gleichschenkliges Dreieck. Dieses besitzt zudem zwei gleich große Winkel, nämlich die Basiswinkel.
Gegenüber dem größten Winkel eines Dreiecks liegt dessen längste Seite.
LösungEin allgemeines Dreieck $\Delta ABC$ besitzt folgende Eigenschaften:
- Die kürzeste Seite liegt dem kleinsten Winkel gegenüber.
- Die längste Seite liegt dem größten Winkel gegenüber.
Gleichschenkliges Dreieck
Hat ein Dreieck zwei gleich lange Seiten, so sind die diesen Seiten gegenüberliegenden Winkel gleich groß. Ein solches Dreieck heißt gleichschenkliges Dreieck. Die gleich langen Seiten sind die Schenkel und die gleich großen Winkel die Basiswinkel des gleichschenkligen Dreiecks.
Gleichseitiges Dreieck
Sind alle Seiten eines Dreiecks gleich lang, dann sind die Winkel dieses Dreiecks gleich groß, nämlich $60$ Grad. Ein solches Dreieck heißt gleichseitiges Dreieck. Der Winkel von $60^\circ$ resultiert aus der Innenwinkelsumme von $180^\circ$ von Dreiecken. Da alle Winkel gleich groß sind, rechnen wir hier $180^\circ : 3=60^\circ$.
-
Nenne die Eigenschaften eines gleichseitigen Dreiecks.
TippsHier siehst du ein gleichseitiges Dreieck.
Sind zwei Seiten gleich lang, so sind die diesen Seiten gegenüberliegenden Winkel gleich groß.
LösungGleichseitiges Dreieck
Sind alle Seiten eines Dreiecks gleich lang, dann sind alle Winkel dieses Dreiecks gleich groß, nämlich $60$ Grad. Ein solches Dreieck heißt gleichseitiges Dreieck. Der Winkel von $60^\circ$ resultiert aus der Innenwinkelsumme von $180^\circ$ von Dreiecken. Da alle Winkel gleich groß sind, rechnen wir hier $180^\circ : 3=60^\circ$.
Nicht zutreffende Aussagen:
- Es besitzt genau zwei gleich lange Seiten.
- Es hat genau zwei gleich große Winkel.
- Ein gleichschenkliges Dreieck ist ein Dreieck, das mindestens zwei gleich lange Seiten besitzt.
Folgende Aussagen treffen ebenfalls nicht zu:
- Es besitzt drei unterschiedlich lange Seiten.
- Alle Winkel betragen $65^\circ$.
-
Ermittle die Winkeleigenschaften der Dreiecke.
TippsHier siehst du, wie ein Dreieck im Allgemeinen beschriftet wird.
Der größte Winkel eines Dreiecks befindet sich gegenüber der größten Seite des Dreiecks.
LösungFür jedes Dreieck gilt folgende Eigenschaft:
- Gegenüber der längsten Seite des Dreiecks liegt der größte Winkel des Dreiecks.
- Gegenüber der kürzesten Seite des Dreiecks liegt der kleinste Winkel des Dreiecks.
Dreieck 1
Mit $a=3~\text{cm}$, $b=8~\text{cm}$ und $c=6~\text{cm}$ erhalten wir folgende aufsteigende Reihenfolge:
- $\alpha$, $\gamma$ und $\beta$
Dreieck 2
Mit $a=5~\text{cm}$, $b=2~\text{cm}$ und $c=4~\text{cm}$ erhalten wir:
- $\beta$, $\gamma$ und $\alpha$
Die Seiten $a=4~\text{cm}$, $b=\frac a2=2~\text{cm}$ und $c=a+1~\text{cm}=5~\text{cm}$ ergeben folgende Reihenfolge:
- $\beta$, $\alpha$ und $\gamma$
-
Bestimme die Eigenschaft, die auf das jeweilige Dreieck zutrifft.
TippsGegenüber dem kleinsten Winkel liegt die kürzeste Seite. Sind zwei Winkel gleich groß, so sind die entsprechenden Seiten auch gleich lang.
LösungMerke dir: In einem Dreieck ist die dem größten Winkel gegenüberliegende Seite die längste. Genauso ist auch die dem kleinsten Winkel gegenüberliegende Seite die kürzeste.
Damit können wir für die gegebenen Dreiecke folgende Eigenschaften feststellen:
Dreieck 1: $~a=5~\text{cm}$, $b=2~\text{cm}$ und $c=4~\text{cm}$
- Hier ist $b$ die kürzeste Seite und damit $\beta$ der kleinste Winkel.
- Da $a$ die längste Seite ist, ist $\alpha$ der größte Winkel in diesem Dreieck.
- Dem kleinsten Winkel $\alpha$ liegt die kürzeste Seite $a$ gegenüber.
- Außerdem sind die beiden Seiten $b$ und $c$ gleich lang.
- Dem größten Winkel $\gamma$ liegt die längste Seite $c$ gegenüber.
- Außerdem sind die beiden Seiten $a$ und $b$ gleich lang.
- Hier ist $a$ die kürzeste Seite und damit $\alpha$ der kleinste Winkel.
- Da $c$ die längste Seite ist, ist $\gamma$ der größte Winkel in diesem Dreieck.
- Also ist $\beta$ größer als $\alpha$ und kleiner als $\gamma$.
-
Benenne die abgebildeten Dreiecke.
TippsGleichseitig bedeutet, dass alle Seiten des Dreiecks gleich lang sind.
Besitzt ein Dreieck keine besonderen Eigenschaften, wie gleich lange Seiten oder einen rechten Winkel, so handelt es sich um ein allgemeines Dreieck.
LösungEin Dreieck mit drei gleich langen Seiten und drei gleich großen Winkeln heißt gleichseitiges Dreieck.
Ein Dreieck, dessen zwei Seiten und zwei Winkel gleich groß sind, heißt gleichschenkliges Dreieck.
Ein Dreieck, das keine Besonderheiten wie einen rechten Winkel oder gleich lange Seiten aufweist, heißt allgemeines Dreieck.
Demnach können wir den hier abgebildeten Dreiecken die folgenden Bezeichnungen zuordnen:
Bild 2 und Bild 4 stellen jeweils ein gleichschenkliges Dreieck dar.
Bild 1 zeigt ein gleichseitiges Dreieck.
Bild 3 gibt ein allgemeines Dreieck wieder.
-
Ermittle die gesuchten Größen.
TippsZeichne dir eine Skizze und überlege, gegenüber welchem Winkel die längste bzw. kürzeste Seite liegt.
Die Seite gegenüber dem Winkel im Standort $C$ ist die Strecke zwischen den Standorten $A$ und $B$.
LösungDie Standorte der Wohnungen dreier Personen bilden ein allgemeines Dreieck auf der Stadtkarte. Dabei ist der Winkel am Standort $A$ $45^\circ$ groß. Der Winkel im Standort $B$ ist $60^\circ$ und der im Standort $C$ $75^\circ$ groß.
In einem allgemeinen Dreieck ist die Seite, die dem größten Winkel gegenüberliegt, am längsten. Der Größte Winkel liegt im Standort $C$. Gegenüber dem Standort $C$ liegt die Strecke zwischen den Standorten $A$ und $B$. Damit ist diese Entfernung am größten.
Im Standort $A$ liegt der kleinste Winkel. Also ist die Entfernung zwischen $B$ und $C$ am geringsten.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.220
Lernvideos
38.700
Übungen
33.508
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt