Potenzgesetze – Einführung
- Einführung: Potenzen
- Die Potenzgesetze
- Potenzgesetze – Potenzen mit gleicher Basis
- Potenzgesetze – Potenzen potenzieren
- Potenzgesetze – Potenzen mit gleichem Exponenten
- Potenzen addieren als Anwendung der Potenzgesetze
- Übungen zu den Potenzgesetzen
- Spezialfälle bei den Potenzgesetzen
- Die Potenzgesetze – Tabellarische Zusammenfassung
- Häufig gestellte Fragen zum Thema Potenzgesetze

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Potenzgesetze – Einführung
Einführung: Potenzen
Eine Potenz ist eine abkürzende Schreibweise für ein Produkt, in welchem der gleiche Faktor mehrmals vorkommt:
$a^n=\underbrace{a\cdot ... \cdot a}_{\text{n-mal}}$
Zum Beispiel ist $2^4=2\cdot 2\cdot 2\cdot 2$.
- $a^n$ wird als Potenz oder Potenzwert bezeichnet.
- $a$ ist die Basis und $n$ der Exponent der Potenz.
$a^n$ ist eine Potenz mit Basis $a$ und Exponent $n$.
Die Potenzgesetze
Für die Multiplikation und Division von Potenzen gibt es verschiedene Rechenregeln, welche das Rechnen mit Potenzen erleichtern. Die folgende Nummerierung der Potenzgesetze ist nicht allgemeingültig, sondern nur der Vereinfachung gedacht.
Potenzgesetze – Potenzen mit gleicher Basis
Potenzen mit gleicher Basis werden multipliziert, indem die Basis beibehalten wird und die Exponenten addiert werden:
$a^n\cdot a^m=a^{n+m}$
Dieses Gesetz ist auch als erstes Potenzgesetz bekannt.
Beispiel: $3^2 \cdot 3^5 = 3^{2+5} = 3^7$
Potenzen mit gleicher Basis werden dividiert, indem die Basis beibehalten wird und die Exponenten subtrahiert werden:
$\dfrac{a^n}{a^m}=a^n: a^m=a^{n-m}$
Dieses Gesetz ist auch als zweites Potenzgesetz bekannt.
Beispiel: $\dfrac{2^{5}}{2^{3}} = 2^5 : 2^3 = 2^{5-3} = 2^2$
Werden Potenzen mit gleicher Basis multipliziert oder dividiert, so können wir die Exponenten addieren oder subtrahieren.
Potenzgesetze – Potenzen potenzieren
Potenzen werden potenziert, indem die Basis mit dem Produkt der Exponenten potenziert wird:
$\left(a^n\right)^m=a^{n\cdot m}$
Dieses Gesetz ist auch als drittes Potenzgesetz bekannt.
Beispiel: $\left( 3^2 \right)^5 = 3^{2 \cdot 5} = 3^{10}$
Werden Potenzen potenziert, so können wir die Exponenten multiplizieren.
Potenzgesetze – Potenzen mit gleichem Exponenten
Potenzen mit gleichem Exponenten werden multipliziert, indem die Basen multipliziert werden und das Produkt mit dem gemeinsamen Exponenten potenziert wird:
$a^n\cdot b^n=(a\cdot b)^n$
Beispiel: $3^2 \cdot 4^2 = \left( 3 \cdot 4\right)^{2} = {12}^2$
Potenzen mit gleichem Exponenten werden dividiert, indem die Basen dividiert werden und der Quotient mit dem gemeinsamen Exponenten potenziert wird:
$a^n: b^n=(a: b)^n~$ oder $~\dfrac{a^n}{b^n}=\left(\dfrac{a}{b}\right)^n$
Beispiel: $6^3 : 2^3= \left( 6 : 2\right)^3 = 3^3$
Diese Gesetze sind zusammen auch als viertes Potenzgesetz bekannt.
Werden Potenzen mit gleichem Exponenten multipliziert oder dividiert, so können wir die Basen multiplizieren oder dividieren und den Exponenten beibehalten.
Potenzen addieren als Anwendung der Potenzgesetze
Beim Addieren von Potenzen muss beachtet werden, dass das Zusammenfassen von Potenzen nur möglich ist, wenn sowohl die Basis als auch der Exponent übereinstimmen:
$2^4+3\cdot 2^4=4\cdot 2^4=2^2\cdot 2^4=2^{2+4}=2^6$
Übungen zu den Potenzgesetzen
Wende im folgenden die Potenzgesetze an, um die Potenzen zu vereinfachen.
Spezialfälle bei den Potenzgesetzen
- Der Exponent $0$: Es gilt für alle $a\neq 0$, dass $a^0=1$ ist.
- Der Term $0^0$ ist nicht definiert.
- Die Basis $0$: Es ist $0^n=0$ für alle $n\in \mathbb{N}$.
- Die Basis $1$: Es ist $1^n=1$ für alle $n\in \mathbb{N}$.
- Negative Exponenten: $a^{-n}=\dfrac{1}{a^n}$
- Rationale Exponenten: $a^{\frac 1n}=\sqrt[n]{a}$.
- Wird ein Bruch mit einem negativen Exponenten potenziert, kann so vereinfacht werden: $\biggl(\dfrac ab\biggr)^{-n}=\biggl(\dfrac ba\biggr)^{n}$
Die Potenzgesetze – Tabellarische Zusammenfassung
Potenz allgemein | Potenz $a^n$ mit Basis $a$ und Exponent $n$ |
---|---|
Potenz mit gleicher Basis multiplizieren | $a^n \cdot a^m =a^{n+m}$ Exponenten addieren, Basis beibehalten |
Potenzen mit gleicher Basis dividieren | $a^n : a^m = a^{n-m}$ Exponenten subtrahieren, Basis beibehalten |
Potenzen mit gleichem Exponenten multiplizieren | $a^n \cdot b^n = \left( a \cdot b\right)^n$ Basen multiplizieren, Exponenten beibehalten |
Potenzen mit gleichem Exponenten dividieren | $a^n : b^n = \left( a : b \right)^n$ Basen dividieren, Exponent beibehalten |
Potenzen potenzieren | $\left( a^n \right)^m = a^{n\cdot m}$ Exponenten multiplizieren |
Exponent $0$ | $a^0 = 1$ für alle $a \neq 0$ |
Basis $0$ | $0^n = 0$ für alle natürlichen Zahlen $n > 0$ |
$0^0$ | ist nicht definiert |
Basis $1$ | $1^n = 1$ für alle natürlichen Zahlen $n$ |
negative Exponenten | $a^{-n}$ ist der Kehrwert von $a^n$ |
rationale Exponenten | $a^{\frac{1}{n}}$ ist die $n$-te Wurzel von $a$ |
Häufig gestellte Fragen zum Thema Potenzgesetze
Transkript Potenzgesetze – Einführung
Hey, was ist hier los? Was hat der denn verbrochen? Wie bitte?! Er hat gegen die Potenzgesetze verstoßen?! Nun ja, ob man ihm das jetzt wirklich vorwerfen kann? Aber Unwissenheit schützt vor Strafe nicht. Am besten werfen wir nochmal gemeinsam einen Blick auf die „Potenzgesetze“. Wow, das sollen wir uns alles merken? So ein erster Blick auf die Potenzgesetze kann einem schnell mal die Laune verderben. Aber keine Sorge! Wir gehen jedes Gesetz einzeln durch und du wirst sehen, dass sie gar nicht so kompliziert sind. Bei den ersten beiden Potenzgesetzen geht es jeweils um zwei Potenzen, die einmal multipliziert und einmal dividiert werden. Die BASIS der Potenzen ist dabei jeweils die gleiche. Lass uns zuerst die Multiplikation genauer anschauen! Wenn wir „x hoch m“ mit „x hoch n“ multiplizieren möchten – also mit einer Potenz, die die gleiche Basis hat – machen wir das, indem wir die Basis beibehalten, und die Exponenten addieren. Dazu ein konkretes Zahlenbeispiel: Wir multiplizieren „drei hoch zwei“ mit „drei hoch vier“. Unser Gesetz sagt uns jetzt, dass wir „drei hoch zwei plus vier“ erhalten. Also „drei hoch sechs“. Um uns zu veranschaulichen, warum dieses Gesetz gilt, schreiben wir die Potenzen als Produkte aus. Dann erhalten wir einmal zwei Dreien, und einmal vier Dreien als Faktoren. Also insgesamt sechs Dreien! Bei der Division von Potenzen mit gleicher Basis funktioniert die Umformung nach dem gleichen Prinzip. In diesem Fall müssen wir die Exponenten einfach subtrahieren. Auch hierzu ein Beispiel: Wir teilen „fünf hoch sechs“ durch „fünf hoch drei“. Das ergibt laut Gesetz „fünf hoch sechs minus drei“, also „fünf hoch drei“. Das sieht doch schon viel besser aus! Mit Hilfe dieser Gesetze können wir Potenzen mit gleicher Basis ganz leicht multiplizieren oder dividieren. Nice, zwei Gesetze abgehakt, drei stehen noch aus. Auch bei den nächsten beiden Gesetzen geht es wieder um Multiplikation und Division. Jetzt sind allerdings nicht die Basen der Potenzen sondern die Exponenten gleich! Ist das der Fall, können wir die Basen erst in einer Klammer zusammenfassen und dann mit dem gemeinsamen Exponenten potenzieren. Zuerst wieder ein Zahlenbeispiel zur Multiplikation. Wenn wir „zwei hoch vier“ mit „drei hoch vier“ multiplizieren, ist das dasselbe, wie wenn wir die Potenz von „zwei mal drei“, also „sechs hoch vier“ berechnen. Dass es sich auch hier lohnt gesetzestreu zu bleiben, erkennen wir, wenn wir die Potenzen nochmal ausschreiben. Denn wenn wir die Faktoren mit Hilfe des Kommutativgesetzes umordnen, und anschließend Klammern setzen, zeigt sich, dass „zwei hoch vier“ mal „drei hoch vier“ und „sechs hoch vier“ tatsächlich gleichwertig sind. Wollen wir zwei Potenzen mit gleichen Exponenten dividieren, dann können wir nach dem gleichen Schema vorgehen und zuerst die Basen dividieren. Das kann uns die Rechenarbeit erheblich erleichtern Läuft bei uns! Jetzt fehlt nur noch das letzte Potenzgesetz, die Königsdisziplin: Das Potenzieren von Potenzen. Wenn wir eine Potenz potenzieren wollen, also die Potenz innerhalb der Klammern ein weiteres mal potenzieren, müssen wir die Exponenten multiplizieren. Zum Beispiel wenn wir den Term „vier hoch zwei hoch drei“ vereinfacht darstellen wollen. Nach unserem Gesetz ergibt das „vier hoch zwei mal drei“, also letztendlich „vier hoch sechs“. Wir veranschaulichen uns auch dieses Gesetz noch kurz, indem wir die Potenzen ausschreiben. Dann sehen wir, dass der Faktor vier tatsächlich sechs mal in unserem Produkt vorkommt. Geht also alles mit rechten Dingen zu. Und schon haben wir die wichtigsten Potenzgesetze beisammen. Natürlich kannst du sie auswendig lernen! Noch besser ist es allerdings, zu hinterfragen warum diese Gesetze sinnvoll sind, um sie so wirklich zu verstehen. Denn wenn wir verstehen, wie Exponenten wirklich funktionieren, können wir uns die Potenzgesetze im Zweifel manchmal auch einfach selbst herleiten. Und sollten dann in Zukunft auch nicht mehr allzu häufig in Konflikt mit den Gesetzen kommen. Im Zweifel für den Angeklagten! Wir plädieren auf Freispruch!
Potenzgesetze – Einführung Übung
-
Belege die beiden Potenzgesetze zur Multiplikation mit Beispielen.
TippsBeispiel:
$5^4 = 5 \cdot 5 \cdot 5 \cdot 5$
Bei einer Potenz gibt der Exponent an, wie oft die Basis mit sich selbst multipliziert wird.
LösungDie beiden Potenzgesetze zur Multiplikation behandeln die Multiplikation von Potenzen mit gleicher Basis und die Multiplikation von Potenzen mit gleichem Exponenten.
Potenzgesetz zur Multiplikation mit gleicher Basis:
$\color{#99CC00}{x^m \cdot x^n = x^{m+n}}$
Wir betrachten als Beispiel die Rechnung $3^2 \cdot 3^4$
Um das Ergebnis zu ermitteln, schreiben wir zunächst die Potenzen aus:
$3^2 = \color{#99CC00}{3 \cdot 3}$
$3^4 = \color{#99CC00}{3 \cdot 3 \cdot 3 \cdot 3}$
Wenn wir beide Potenzen multiplizieren, müssen wir die beiden Produkte hintereinanderschreiben:
$3^2 \cdot 3^4 = \underbrace{3 \cdot 3}_{2~\text{mal}} ~\cdot~ \underbrace{3 \cdot 3 \cdot 3 \cdot 3}_{4~\text{mal}}$
Wir erhalten also ein Produkt mit insgesamt $2+4=\color{#99CC00}{6}$ Faktoren.
Daher gilt:
$3^2 \cdot 3^4 = 3^{2+4} = 3^6$Potenzgesetz zur Multiplikation mit gleichem Exponenten:
$\color{#99CC00}{x^n \cdot y^n = (x \cdot y)^n}$
Wir betrachten als Beispiel die Rechnung $2^4 \cdot 3^4$
Um das Ergebnis zu ermitteln, schreiben wir zunächst die Potenzen aus:
$2^4 \cdot 3^4 = \color{#99CC00}{2 \cdot 2 \cdot 2 \cdot 2} \color{black}{~\cdot~} \color{#99CC00}{3 \cdot 3 \cdot 3 \cdot 3}$
Wenn wir Faktoren neu ordnen, können wir immer zwei Faktoren zusammenfassen:
$2 \cdot 3 \cdot 2 \cdot 3 \cdot 2\cdot 3 \cdot 2 \cdot 3 = (2 \cdot 3) \cdot (2 \cdot 3) \cdot (2\cdot 3) \cdot (2 \cdot 3)$
Wir erhalten also ein Produkt aus vier Faktoren, welche das Produkt $\color{#99CC00}{(2 \cdot 3)}$ sind.
Daher gilt:
$2^4 \cdot 3^4=(2 \cdot3)^4 = 6^4$ -
Vervollständige die Potenzgesetze.
TippsWir können zwei Potenzen mit gleicher Basis multiplizieren, indem wir die Exponenten addieren und die Basis beibehalten.
Wir können zwei Potenzen mit gleichem Exponenten multiplizieren, indem wir die Basen multiplizieren und den Exponenten beibehalten.
LösungDie Potenzgesetze helfen uns, Terme mit Potenzen zusammenzufassen und zu vereinfachen. Wir können dabei die folgenden Potenzgesetze anwenden:
Multiplikation von Potenzen mit gleicher Basis:
Wir können zwei Potenzen mit gleicher Basis multiplizieren, indem wir die Exponenten addieren und die Basis beibehalten. Kurz gefasst:
$x^m \cdot x^n = x^\color{#99CC00}{m~+~n}$
Beispiel: $5^3 \cdot 5^5 = 5^{3~+~5} = 5^8$Division von Potenzen mit gleicher Basis:
Wir können zwei Potenzen mit gleicher Basis dividieren, indem wir die Exponenten subtrahieren und die Basis beibehalten. Kurz gefasst:
$\dfrac{x^m}{x^n} = x^\color{#99CC00}{m~-~n}$
Beispiel: $\dfrac{3^8}{3^5} = 3^{8~-~5} = 3^3$Multiplikation von Potenzen mit gleichem Exponenten:
Wir können zwei Potenzen mit gleichem Exponenten multiplizieren, indem wir die Basen multiplizieren und den Exponenten beibehalten. Kurz gefasst:
$x^n \cdot y^n = (x \cdot y)^\color{#99CC00}{n}$
Beispiel: $5^3 \cdot 3^3 = (5 \cdot 3)^3 = 15^3$Division von Potenzen mit gleichem Exponenten:
Wir können zwei Potenzen mit gleichem Exponenten dividieren, indem wir die Basen dividieren und den Exponenten beibehalten. Kurz gefasst:
$\dfrac{x^n}{y^n} = \left(\dfrac{x}{y}\right)^\color{#99CC00}{\!n}$
Beispiel: $\dfrac{15^2}{5^2} = \left(\dfrac{15}{5}\right)^2 = 3^2$Potenzieren von Potenzen:
Wir können eine Potenz potenzieren, indem wir die Basis beibehalten und die Exponenten multiplizieren. Kurz gefasst:
$(x^m)^n = x^\color{#99CC00}{m ~\cdot~ n}$
Beispiel: $(2^2)^5 = 2^{2 ~\cdot~ 5} = 2^{10}$ -
Fasse die Potenzen zusammen.
TippsÜberlege zunächst, ob die Basen gleich sind oder ob die Exponenten gleich sind.
Potenzgesetzte zur Division:
$\dfrac{x^m}{x^n} = x^{m-n}$
$\dfrac{x^n}{y^n} = \left(\dfrac{x}{y}\right)^n$
LösungDie Potenzgesetze geben uns vor, wie wir Potenzen vereinfachen und zusammenfassen können:
- $x^m \cdot x^n = x^{m~+~n}$
- $\dfrac{x^m}{x^n} = x^{m~-~n}$
- $x^n \cdot y^n = (x \cdot y)^n$
- $\dfrac{x^n}{y^n} = \left(\dfrac{x}{y}\right)^n$
- $(x^m)^n = x^{m ~\cdot~ n}$
Wir betrachten die einzelnen Aufgaben und überlegen, welches Gesetz wir anwenden können:
Aufgabe 1:
$3^5 \cdot 4^5 = \square^{\,5}$
Es handelt sich um eine Multiplikation von Potenzen mit gleichem Exponenten. Das passende Gesetz lautet:
$x^n \cdot y^n = (x \cdot y)^n$
Wir fassen also die Basen zusammen:
$3^5 \cdot 4^5 = (3 \cdot 4)^5 = \color{#99CC00}{12}^\color{black}{\,5}$Aufgabe 2:
$\dfrac{7^5}{7^3} = \square^{\,2}$
Es handelt sich um eine Division von Potenzen mit gleicher Basis. Das passende Gesetz lautet:
$\dfrac{x^m}{x^n} = x^{m~-~n}$
Wir fassen also die Exponenten zusammen:
$\dfrac{7^5}{7^3} =7^{5~-~3} = \color{#99CC00}{7}^\color{black}{\,2}$Aufgabe 3:
$\square^{\,4} \cdot 4^4 = 24^4$
Es handelt sich um eine Multiplikation. Der Exponent bleibt erhalten. Es geht also um die Multiplikation von Potenzen mit gleichem Exponenten. Das passende Gesetz lautet:
$x^n \cdot y^n = (x ~\cdot~ y)^n$
Die Basen wurden also zu $24$ zusammengefasst. Um die fehlende Basis zu ermitteln, rechnen wir $24:4$ und erhalten:
$\color{#99CC00}{6}^{\color{black}{\,4}} \color{black}{\cdot 4^4 = 24^4}$Aufgabe 4:
$6^4 : \square^{\,4} = 2^4$
Es handelt sich um eine Division. Der Exponent bleibt erhalten. Es geht also um die Division von Potenzen mit gleichem Exponenten. Das passende Gesetz lautet:
$\dfrac{x^n}{y^n} = \left(\dfrac{x}{y}\right)^n$
Die Basen wurden also zu $2$ zusammengefasst. Um die fehlende Basis zu ermitteln, rechnen wir $6 \cdot 2$ und erhalten: $6^4 : \color{#99CC00}{3}^{\color{black}{\,4}} \color{black}{= 2^4}$ -
Wende die Potenzgesetze an.
TippsUnterscheide:
- Multiplikation bei gleicher Basis: $x^m \cdot x^n = x^{m+n}$
- Multiplikation bei gleichem Exponenten: $x^n \cdot y^n = (x \cdot y)^n$
Beispiel:
$(5^3)^5 = 5^{3 \cdot 5} = 5^{15}$
LösungUm Potenzen zu vereinfachen und zusammenzufassen, können wir bei den einzelnen Rechenoperationen Potenzgesetze anwenden:
- Multiplikation bei gleicher Basis:
- Division bei gleicher Basis:
- Multiplikation bei gleichem Exponenten:
- Division bei gleichem Exponent:
- Potenzieren:
Wir wenden die Gesetze auf die gegebenen Aufgaben an:
$3^4 \cdot 3^5 = 3^{4+5} = 3^9$
$(3^4)^5 = 3^{4 \cdot 5} = 3^{20}$
$\dfrac{4^5}{4^2} = 4^{5-2} = 4^3$
$4^3 \cdot 3^3 = (4 \cdot 3)^3 = 12^3$
$\dfrac{12^4}{3^4} = \left( \dfrac{12}{3} \right)^4 = 4^4$
-
Stelle die Potenzen in der ausführlichen Schreibweise dar.
TippsDer Exponent (die Hochzahl) gibt die Anzahl der Faktoren an:
$x^n = \underbrace{x \cdot x \cdot \dots x}_{n\text{-mal}}$
Beispiel:
$7^5 = \underbrace{7 \cdot 7 \cdot 7 \cdot 7 \cdot 7}_{5\text{-mal}}$
LösungEine Potenz ist die Kurzschreibweise für eine wiederholte Multiplikation. Den Faktor, welcher mit sich selbst multipliziert wird, schreiben wir dabei nach unten als Basis. Die Anzahl der Faktoren kommt in die Hochzahl, den Exponenten.
Umgekehrt können wir also auch jede Potenz als Multiplikation ausschreiben, indem wir die Basis als Faktor verwenden und so viele Faktoren notieren, wie der Exponent vorgibt.Allgemein gilt: $~x^n = \underbrace{x \cdot x \cdot \dots x}_{n\text{-mal}}$
Für die Beispiele dieser Aufgabe ergibt sich somit:
- $3^4 = 3 \cdot 3 \cdot 3 \cdot 3$
- $4^2 = 4 \cdot4$
- $2^4 = 2 \cdot 2 \cdot 2 \cdot 2$
- $2^3 = 2 \cdot 2 \cdot 2$
- $5^3 = 5 \cdot 5 \cdot 5$
-
Überprüfe die Anwendung der Potenzgesetze.
TippsRechne immer von innen nach außen. Beginne also immer mit der innersten Klammer.
Bei einer Multiplikation zweier Brüche rechnest du Zähler mal Zähler und Nenner mal Nenner. Die Faktoren im Zähler und die Faktoren im Nenner kannst du dann jeweils vertauschen.
LösungUm Terme mit Potenzen zusammenzufassen, müssen wir uns an die Potenzgesetze halten. Diese lauten:
- Multiplikation bei gleicher Basis:
- Division bei gleicher Basis:
- Multiplikation bei gleichem Exponenten:
- Division bei gleichem Exponent:
- Potenzieren:
Wir überprüfen die Rechnungen:
Erste Rechnung:
$\begin{array}{ll} \dfrac{(a^3 \cdot b^3)^4}{b^2} &= \dfrac{a^{12} \cdot b^{12}}{b^2} = a^{12} \cdot b^{12-2} \\ & \\ &= a^{12} \cdot b^{10} \end{array}$
Dieser Term wurde richtig zusammengefasst.Zweite Rechnung:
$\left( \dfrac{x^8}{x^3} \right) \cdot y^6 \color{red}{~\neq~} \color{black}{\dfrac{(xy)^6}{x^3}}$
Dieser Term wurde falsch zusammengefasst. Korrekt gehen wir wie folgt vor:
$\left( \dfrac{x^8}{x^3} \right) \cdot y^6 = x^{8-3} \cdot y^6 = x^5 \cdot y^6 = \dfrac{(xy)^6}{x}$Dritte Rechnung:
$\begin{array}{ll} \left( \dfrac{z^5}{y^5} \cdot \dfrac{1}{z^3} \right)^4 &= \left( \dfrac{z^5}{z^3} \cdot \dfrac{1}{y^5} \right)^4 = \left( z^{5-3} \cdot \dfrac{1}{y^5} \right)^4 \\ & \\ &= \left( \dfrac{z^2}{y^5} \right)^4 = \dfrac{z^8}{y^{20}} \end{array}$
Dieser Term wurde richtig zusammengefasst.Vierte Rechnung:
$\dfrac{(3^x \cdot 5^x)^4}{15^y} \color{red}{~\neq~} \color{black}15^{\small{\frac{4x}{y}}}$
Dieser Term wurde falsch zusammengefasst. Korrekt gehen wir wie folgt vor:
$\begin{array}{ll} \dfrac{(3^x \cdot 5^x)^4}{15^y} &= \dfrac{((3 \cdot5)^x)^4}{15^y} = \dfrac{(15^x)^4}{15^y} = \dfrac{15^{4x}}{15^y} \\ & \\ &= 15^{4x-y} \end{array}$

Potenzgesetze – Einführung

Multiplikation und Division von Potenzen

Division von Potenzen – Einführung

Potenzgesetze – Multiplikation und Division

Multiplikation von Potenzen mit gleicher Basis

Multiplikation und Division von Potenzen – Herleitung

Division von Potenzen mit gleicher Basis

Potenzgesetze – Potenzen mit gleichem Exponenten

Potenzgesetze – Potenzen mit gleicher Basis

Potenzgesetze – Quotient von Potenzen
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Rechteck
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was ist eine Viertelstunde
- Prisma
- Mitternachtsformel
- Grundrechenarten Begriffe
- Dreiecksarten
- Quader
- Satz des Pythagoras
- Dreieck Grundschule
- Erste binomische Formel
- Kreis
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen in Worten schreiben
- Meter
- Orthogonalität
- Schriftlich multiplizieren
- Brüche multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen berechnen
- Brüche addieren
- Kongruenz
- Exponentialfunktion
- Scheitelpunktform
- Logarithmus
- Erwartungswert
- Skalarprodukt
- Primfaktorzerlegung
- Quadratische Ergänzung
- Zinseszins
- Geradengleichung aus zwei Punkten bestimmen
- Sinusfunktion
Das Video war sehr hilfreich Danke <3
Super Erklärung 👍
ehrenmann
Sehr gut erklärt
Tolles Video, sehr ausführlich erklärt!!