Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Division von Potenzen – Einführung

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.3 / 29 Bewertungen
Die Autor*innen
Avatar
Team Digital
Division von Potenzen – Einführung
lernst du in der 9. Klasse - 10. Klasse

Division von Potenzen – Einführung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Division von Potenzen – Einführung kannst du es wiederholen und üben.
  • Beschreibe die Division von Potenzen.

    Tipps

    Hätte Morten fünf Axolotl-Briefmarken, so könnte er sie durch die Potenz $a^5$ repräsentieren. $5$ ist hierbei der Exponent.

    Die Differenz der Briefmarkenzahl entspricht dem Exponenten, der bei der Division der Terme von Manfreds und Mortens Sammlung auftritt.

    Hat Morten eine Axolotl-Briefmarke und Manfred nicht, so ergibt sich der Quotient $\frac{1}{a}$. Hat umgekehrt Manfred eine Axolotl-Briefmarke, aber Morten nicht, so ist der Quotient $\frac{a}{1}$.

    Lösung

    Morten und Manfred vergleichen ihre Briefmarkensammlungen mithilfe von Potenzen. Dazu repräsentieren sie ihre Briefmarkensammlungen als Produkt aller einzelnen Briefmarken-Terme. Briefmarken gleichen Typs werden dabei als Potenzen dargestellt. Die Basis $a$ steht für Axolotl-Briefmarken, $b$ für Barsch-Briefmarken und $c$ für Clownfisch-Briefmarken. Der Exponent einer Potenz repräsentiert dann die Anzahl der Briefmarken des durch die Basis repräsentierten Typs.

    Für seine drei Axolotl-Briefmarken schreibt Manfred also den Term $a^3$, denn $a$ steht für Axolotl, und der Exponent $3$ in $a^3$ repräsentiert die Anzahl. Für seine beiden Barsch-Briefmarken schreibt Manfred $b^2$ und für die vier Clownfisch-Briefmarken $c^4$.

    Um nun das Verhältnis dieser Terme zu den Termen $a^3$ und $b$ und $c^5$ aus Mortens Sammlung zu bestimmen, bilden die Sammler den Quotienten aus dem Produkt der Potenzen:

    $\frac{a^3 \cdot b^2 \cdot c^4}{a^3 \cdot b \cdot c^5}$

    Um den Ausdruck zu vereinfachen, fassen sie nun die Potenzen mit gleicher Basis zusammen:

    $\frac{a^3}{a^3} \cdot \frac{b^2}{b} \cdot \frac{c^4}{c^5}$

    Das Potenzgesetz hilft dabei, diesen Term zu vereinfachen. Es besagt nämlich: Die Division von Potenzen gleicher Basis entspricht der Subtraktion ihrer Exponenten. Als Formel bedeutet das:

    $\frac{a^m}{a^n} = a^{m-n}$

    Nun können Manfred und Morten den obigen Term vereinfachen und erhalten:

    $\frac{a^3}{a^3} \cdot \frac{b^2}{b} \cdot \frac{c^4}{c^5} = a^0 \cdot b^1 \cdot c^{-1} = \frac{b}{c}$

    Das Ergebnis bedeutet: Morten hat einen Clownfisch mehr als Manfred, denn $\frac{c^4}{c^5} = c^{-1}$ und die Terme, immer Nenner, repräsentieren Mortens Briefmarken. Manfred dagegen ist Morten bei den Barschen um eine Briefmarke voraus, denn $\frac{b^2}{b} = b^1$. Bei den Axolotls herrscht Gleichstand:

    $\frac{a^3}{a^3} = a^0$.

  • Bestimme die Potenzen.

    Tipps

    Die Potenz $a^3$ bedeutet: $a$ wird dreimal mit sich selbst multipliziert, d. h. $a^3 = a \cdot a \cdot a$.

    Bei einem Ausdruck der Form $\frac{a^3 \cdot b^4}{a^2 \cdot b^3}$ kannst Du die Potenzen im Zähler und Nenner ausschreiben und dann Terme kürzen.

    Der Quotient von Potenzen derselben Basis ist wieder eine Potenz zu dieser Basis. Der Exponent des Quotienten ist die Differenz der Exponenten von Zähler und Nenner.

    Lösung

    Das Potenzgesetz besagt: Potenzen gleicher Basis multiplizierst Du, indem Du die Exponenten addierst. Analog ist die Division von Potenzen zur gleichen Basis wieder eine Potenz zu dieser Basis. Der Exponent des Quotienten ist die Differenz der Exponenten von Zähler und Nenner. Als Formel kannst Du das so aufschreiben:

    $\frac{a^m}{a^n} = a^{(m-n)}$

    Mit dieser Vorüberlegung kannst Du die Gleichungen überprüfen.

    Folgende Gleichungen sind richtig:

    • $\frac{b^2 \cdot c^4}{b \cdot c^5} = \frac{b}{c}$, denn für die Exponten von $b$ gilt: $2-1 = 1$, und für die Exponenten von $c$ rechnest Du: $4-5 = -1$. Daher ist $\frac{b^2 \cdot c^4}{b \cdot c^5} = b^1 \cdot c^{-1} = \frac{b}{c}$.
    • $\frac{27 \cdot a^2 \cdot b^3}{9 \cdot a \cdot b^2} = 3 \cdot a \cdot b$. Hier rechnest Du für die Koeffizienten: $\frac{27}{9} = 3$, für die Exponenten von $a$ ergibt sich $2-1 = 1$, und bei $b$ lautet die Exponenten-Rechnung $3 -2 =1$. Der Quotient ist demnach $3 \cdot a \cdot b$.
    • $\frac{18 \cdot x^5 \cdot y^3}{6 \cdot x^3 \cdot y^2} = 3 \cdot y \cdot x^2$. Für die Koeffizienten rechnest Du: $\frac{18}{6} = 3$. Für die Exponenten von $x$ findest Du $5-3 = 2$, und die Rechnung für die Exponenten von $y$ lautet: $3-2=1$.
    Folgende Gleichungen sind falsch:

    • $\frac{a^3 \cdot b^2}{a^3} = (ab)^6$. Auf der linken Seite kannst Du $a^3$ kürzen, daher ist $\frac{a^3 \cdot b^2}{a^3} = b^2$. Für die rechte Seite rechnest Du $(ab)^6 = a^6 \cdot b^6 \neq b^2$.
    • $\frac{a^3 \cdot b^2}{a^3 \cdot b^1} = \frac{a \cdot b}{b}$. Links kannst Du $a^3$ kürzen, rechts $b$. So rechnest Du dann: $\frac{a^3 \cdot b^2}{a^3 \cdot b^1} = \frac{b^2}{b^1} = b^{(2-1)} \neq a = \frac{a \cdot b}{b}$.
    • $\frac{x^5 \cdot y^3}{x^3 \cdot y^2} = y^2 \cdot x$. Auf der linken Seite lautet die korrekte Rechnung: $\frac{x^5 \cdot y^3}{x^3 \cdot y^2} = x^{(5-3)} \cdot y^{(3-2)} = x^2 \cdot y \neq y^2 \cdot x$.
  • Erschließe die Potenzen.

    Tipps

    Vereinfache die Brüche mithilfe des Potenzgesetzes oder durch Kürzen.

    Den Term $\frac{x^1 \cdot y^2 \cdot z^3 \cdot w^4}{x^7 \cdot y^6 \cdot z^5 \cdot w^4}$ kannst Du mit dem Potenzgesetz vereinfachen zu:

    $\frac{1}{x^6 \cdot y^4 \cdot z^2} = x^{-6} \cdot y^4 \cdot z^2 \cdot w^0$

    Lösung

    Du kannst die Terme vereinfachen, indem Du die Potenzen ausmultiplizierst und dann kürzt. Alternativ kannst Du auch das Potenzgesetz zur Vereinfachung verwenden. Hast Du alle möglichen Potenzen gekürzt, so kannst Du das Ergebnis als Produkt von Potenzen darstellen, indem Du den Nenner als negative Potenz aufschreibst.

    Du erhältst dann folgende Terme:

    • $\frac{x^1 \cdot y^3 \cdot z^2 \cdot w^2}{x^0 \cdot y^1 \cdot z^3 \cdot w^2} = \frac{x \cdot y^2}{z} = x^1 \cdot y^2 \cdot z^{-1} \cdot w^0$
    • $\frac{x^2 \cdot y^3 \cdot z^6 \cdot w^3}{x^2 \cdot y^2 \cdot z^5 \cdot w^1} = \frac{y \cdot z \cdot w^2}{1} = x^0 \cdot y^1 \cdot z^1 \cdot w^2$
    • $\frac{x^4 \cdot y^3 \cdot z^7 \cdot w^4}{x^5 \cdot y^4 \cdot z^5 \cdot w^1} = \frac{z^2 \cdot w^3}{x \cdot y} = x^{-1} \cdot y^{-1} \cdot z^2 \cdot w^3$
    • $\frac{x^2 \cdot y^2 \cdot z^1 \cdot w^4}{x^0 \cdot y^2 \cdot z^3 \cdot w^5} = \frac{x^2}{z^2 \cdot w} = x^2 \cdot y^0 \cdot z^{-2} \cdot w^{-1}$
  • Vergleiche die Potenzen.

    Tipps

    Schreibe die Potenzen auf der linken und rechten Seite aus und kürze, um eine möglichst einfache Form des Bruches zu finden.

    Der Quotient aus Potenzen derselben Basis ist wieder eine Potenz dieser Basis. Der Exponent des Quotienten ist die Differenz der Exponenten von Zähler und Nenner.

    $\frac{x^5 \cdot z^2}{x^2 \cdot y \cdot z^3} = \frac{x^3}{y \cdot z}$

    und

    $\frac{x^3 \cdot z}{y \cdot z^2} = \frac{x^3}{y \cdot z}$

    Lösung

    Um die Terme zu Gleichungen zu verbinden, kannst Du jeweils die linke und rechte Seite auf die einfachste mögliche Form bringen, indem Du die Potenzen ausschreibst und kürzt. Statt zu kürzen, kannst Du auch das Potenzgesetz

    $\frac{a^m}{a^n} = a^{(m-n)}$

    verwenden, um die Terme zu vereinfachen. Damit findest Du folgende Gleichungen (der mittlere Term ist jeweils der gekürzte Bruch):

    • $\frac{x^3 \cdot y^2 \cdot z}{x^2 \cdot y^3 \cdot z} = \frac{x}{y} = \frac{x^2}{y \cdot x}$
    • $\frac{x^2 \cdot y^2 \cdot z^2}{x^3 \cdot y^3 \cdot z} = \frac{z}{x \cdot y} = \frac{z^2 \cdot x}{x^2 \cdot y \cdot z}$
    • $\frac{x^3 \cdot y^2 \cdot z^2}{x^3 \cdot y^3 \cdot z} = \frac{z}{y} = \frac{z^3}{y \cdot z^2}$
    • $\frac{x \cdot y \cdot z}{x^2 \cdot y \cdot z^3} = \frac{1}{x \cdot z^2} = \frac{y}{x \cdot y \cdot z^2}$
  • Ergänze das Potenzgesetz.

    Tipps

    In dem Ausdruck $5^3$ ist die größere Zahl die Basis.

    Um Potenzen auszurechnen, kannst Du sie ausmultiplizieren.

    Das Potenzgesetz besagt: $a^m \cdot a^n = a^{(m+n)}$.

    Lösung

    Die Potenzen einer Zahl $a$ entstehen, indem Du $a$ mit sich selbst multiplizierst: $a^2 = a \cdot a$ und $a^3 = a\cdot a \cdot a$ usw. Die Anzahl der Faktoren bildet den Exponenten der Potenz: In $a^n$ wird $a$ also $n$-mal mit sich selbst multipliziert. Die Basis einer Potenz $a^n$ ist die Zahl $a$, die mit sich selbst multipliziert wird.

    Das Potenzgesetz

    $a^m \cdot a^n = a^{m+n}$

    kannst Du auch benutzen, um Potenzen zu dividieren. Dazu musst Du Dir klarmachen, dass eine Potenz $a^m$ im Nenner der Multiplikation mit $a^{-m}$ bedeutet. Für die Division von Potenzen findest Du dann das Potenzgesetz:

    $\frac{a^m}{a^n} = a^m \cdot a^{-n} = a^{(m+(-n))} = a^{(m-n)}$.

    Konkret bedeutet das:

    $\frac{a^2}{a} = \frac{a^2}{a^1} = a^{(2-1)} = a^1 = a$.

  • Analysiere die Rechenregeln.

    Tipps

    Übersetze die Aussagen in Formeln mit Variablen oder Zahlen, um sie zu überprüfen.

    Es gilt:

    $a^2 \cdot b^2 = (a \cdot b)^2$

    Die binomische Formel lautet:

    $(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$

    Lösung

    Du kannst die Aussagen in Formeln übersetzen. An den Formeln kannst Du eventuell leichter erkennen, welche Aussagen richtig sind.

    Folgende Regeln sind richtig:

    • „Das Produkt von Potenzen mit Exponent $n$ ist die $n$-te Potenz des Produkts der Basen.“ Die passende Formel lautet $a^n \cdot b^n = (a \cdot b)^n$.
    • „Eine Potenz mit einer Summe im Exponenten ist dasselbe wie das Produkt der Potenzen mit den Summanden als Exponenten.“ Als Formel kannst Du die Regel so schreiben: $a^{m+n} = a^m \cdot a^n$.
    Folgende Regeln sind falsch:

    • „Das Potenzgesetz bestimmt die Multiplikation oder Division von Potenzen gleicher Exponenten.“ Stattdessen bestimmt das Potenzgesetz die Multiplikation von Potenzen mit gleicher Basis.
    • „In einem Quotient von Potenzen kann man die Exponenten kürzen.“ Terme kürzen kannst Du aus dem Quotienten erst, nachdem Du die Potenzen ausmultipliziert hast.
    • „In einem Quotient von Potenzen kann man die Basen kürzen.“ Das Kürzen eines Bruchs bedeutet, dass Du gleiche Terme im Zähler und Nenner streichst. Um aus Potenzen kürzen zu können, kannst Du z. B. die Potenzen ausmultiplizieren. Tritt im Zähler und Nenner dieselbe Potenz auf, so kannst Du sie auch direkt kürzen, ohne vorher auszumultiplizieren. In diesem Fall streichst Du beim Kürzen die ganze Potenz weg, nicht nur die Basis.
    • „Eine Summe von Potenzen ist dasselbe wie das Produkt der Exponenten.“ Eine Summe von Potenzen kannst Du meistens nicht umformen. Nicht einmal dann, wenn die Basen oder die Exponenten gleich sind. Insbesondere kannst Du eine Summe von Potenzen auch nicht durch einen Term ersetzen, der nur aus dem Produkt der Exponenten besteht und die Basen gar nicht enthält.
    • „Die Potenz einer Summe ist dasselbe wie die Summe der Potenzen der einzelnen Summanden.“ Die binomische Formel bestimmt z. B., wie Du die zweite Potenz einer Summe ausrechnest: $(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$. Die Potenz der Summe enthält nicht nur die Summe der Potenzen $a^2 + b^2$, sondern auch den gemischten Term $2 \cdot a \cdot b$.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.156

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.930

Lernvideos

37.078

Übungen

34.333

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden