30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Schriftlich multiplizieren

Bewertung

Ø 4.0 / 436 Bewertungen

Die Autor*innen
Avatar
Team Digital
Schriftlich multiplizieren
lernst du in der 5. Klasse - 6. Klasse

Beschreibung Schriftlich multiplizieren

Inhalt

Schriftliches Multiplizieren - Einführung

Die schriftliche Multiplikation ist ein Verfahren, mit dem man größere Zahlen ohne Taschenrechner einfach multiplizieren kann. Dafür ist es besonders wichtig, die schriftliche Addition sowie das Einmaleins zu beherrschen.

Die Fachbegriffe zur Multiplikation lauten wie folgt:

Faktor $\cdot$ Faktor $=$ Produkt

Dabei können die Faktoren beliebig vertauscht werden. Es gilt zum Beispiel:

$3\cdot12=12\cdot3=36$

Schriftliches Multiplizieren - Methode

Während bei der schriftlichen Addition und Subtraktion mit mehreren Zahlen gleichzeitig gerechnet werden kann, können bei der schriftlichen Multiplikation nur zwei Zahlen in einem Schritt multipliziert werden. Es ist aber natürlich möglich, mit dem neuen Produkt weiterzurechnen und dieses mit dem nächsten Faktor zu multiplizieren.

Vorgehensweise

Im Folgenden wird die Multiplikation $3758\cdot4$ schrittweise gelöst.

Schritt 0: Schätzung

Bevor man mit der eigentlichen Rechnung beginnt, kann man vorab das Ergebnis durch Runden schätzen. Dieser Schritt ist nicht unbedingt notwendig, kann aber oft sehr hilfreich sein, um eine ungefähre Vorstellung zu bekommen. Zunächst wird der erste Faktor wie folgt gerundet:

$3758\approx4000$

Dann folgt: $~4000\cdot 4=16000$

Das richtige Ergebnis liegt also ungefähr bei $16000$. Um die genaue Zahl zu erhalten, muss man schriftlich multiplizieren.

Schritt: Aufgabe aufschreiben und eine waagerechte Linie ziehen.

$\begin{array}{rrrrrr} 3&7&5&8&\cdot&4\\ \hline \end{array}$

Schritt 1: erste Multiplikation

Man beginnt stets mit der ersten Ziffer des zweiten Faktors und multipliziert sie mit der letzten Ziffer des ersten Faktors, also der Einerstelle. D.h. man rechnet in diesem Fall $4\cdot8=32$. Danach schreibt man die $2$ unter die erste Zahl des zweiten Faktors unterhalb der waagerechten Linie und merkt sich die $3$ als Übertrag für die nächste Stelle.

$\begin{array}{rrrrrr} 3&7&5&8&\cdot&4\\ \hline &&&&&\color{#669900}{_{3}2}&\\ \end{array}$

Schritt 2: zweite Multiplikation

Nun nimmt man wieder die erste Ziffer des zweiten Faktors, multipliziert sie aber mit der Zehnerstelle, also der $5$. Man rechnet nun $4\cdot5=20$ und ergänzt den gemerkten Übertrag: $20+3=23$. Die $3$ schreibt man links neben das erste Ergebnis und merkt sich den Übertrag $2$.

$\begin{array}{rrrrrr} 3&7&5&8&\cdot&4\\ \hline &&&&\color{#669900} {_{2}3}&_{3}2&\\ \end{array}$

Schritt 3: dritte Multiplikation

Jetzt macht man weiter mit der Hunderterstelle. Man rechnet also $4\cdot7=28$ und $28+2=30$ (Übertrag). Nun schreibt man die $0$ daneben und merkt sich die $3$.

$\begin{array}{rrrrrr} 3&7&5&8&\cdot&4\\ \hline &&&\color{#669900} {_{3}0}&_{2}3&_{3}2&\\ \end{array}$

Schritt 4: letzte Multiplikation

Bei der Tausenderstelle rechnet man $4\cdot3=12$ und $12+3=15$ (Übertrag). Da dies die letzte Stelle ist, mit der man in der Rechnung gerechnet hat, kann man hier die $15$ direkt notieren.

$\begin{array}{rrrrrr} 3&7&5&8&\cdot&4\\ \hline &\color{#669900}{1}&\color{#669900}{5}&_{3}0&_{2}3&_{3}2&\\ \end{array}$

Als Endergebnis ergibt sich also $15032$.

  • Dieses Beispiel ist relativ einfach, da hier einer der Faktoren nur eine Ziffer besitzt. Ein bisschen schwieriger wird es, wenn bei beiden Faktoren mehrere Ziffern gegeben sind. Das folgende Beispiel zeigt, was bei so einer Berechnung noch zusätzlich beachtet und gerechnet werden muss.

Schriftliches Multiplizieren mit großen Zahlen

Erich der Erpel arbeitet in seiner eigenen Reiseagentur und plant sämtliche Reisen für Zugvögel. Neben der Berechnung der Kilometerzahl muss er natürlich auch die Menge an Proviant einkalkulieren. Und zwar: $1493$ Gramm pro Vogel. In diesem Schwarm befinden sich $78$ Vögel. Um die Gesamtmenge an Proviant auszurechnen, kann man schriftlich multiplizieren: $1493\cdot78$

Schritt 1: Schätzung

$1500\cdot80=120000$

Schritt: Aufgabe aufschreiben und eine waagerechte Linie ziehen

$\begin{array}{ccccccc} 1&4&9&3&\cdot&7&8\\ \hline \end{array}$

Schritt 2: Multiplikation mit der ersten Ziffer des zweiten Faktors

Zuerst wird die erste Ziffer des zweiten Faktors mit allen Ziffern des ersten Faktors auf dieselbe Weise wie in dem obigen Beispiel multipliziert. Es folgt:

$\begin{array}{ccccccc} 1&4&9&3&\cdot&7&8\\ \hline &1&0&_{3}4&_{6}5&_{2}1&\\ \end{array}$

Schritt 3: Multiplikation mit der zweiten Ziffer des zweiten Faktors

Man multipliziert nun die zweite Ziffer des zweiten Faktors wieder mit der Einerstelle des ersten Faktors. Hier geht man mit demselben Muster vor. Man beginnt mit $8 \cdot 3=24$, schreibt die $4$ in eine neue Zeile direkt unter der zweiten Zahl des zweiten Faktors und merkt sich eine $2$.

Für die Einerstelle:

$\begin{array}{ccccccc} 1&4&9&3&\cdot&7&8\\ \hline &1&0&_{3}4&_{6}5&_{2}1&\\ &&&&&&\color{#669900}{_{2}4} \end{array}$

Für alle weiteren Stellen folgt:

$\begin{array}{ccccccc} 1&4&9&3&\cdot&7&8\\ \hline &1&0&_{3}4&_{6}5&_{2}1&\\ &&1&1&_{3}9&_{7}4&_{2}4 \end{array}$

Es sind nun keine weiteren Stellen zur Multiplikation mehr offen. Nun kann das Ergebnis berechnet werden.

Schritt 4: Berechnung

Das Ergebnis der schriftlichen Multiplikation erhält man, indem man die beiden Zahlen unter der waagerechten Linie schriftlich addiert.

$\begin{array}{ccccccc} 1&4&9&3&\cdot&7&8\\ \hline &1&0&4&5&1&\\ +&&1&_{1}1&9&4&4\\ \hline &1&1&6&4&5&4 \end{array}$

Die Vögel müssen also insgesamt $116454$ Gramm Futter einpacken.

Dieses Video

Nach dem Schauen dieses Videos wirst du in der Lage sein, schriftlich zu multiplizieren.

Zunächst lernst du, wie du eine Rechnung durch Runden schätzen kannst. Anschließend lernst du, wie du eine Zahl mit einem einstelligen Faktor multiplizierst. Abschließend lernst du, wie du eine Zahl mit einem mehrstelligen Faktor multiplizierst.

Bevor du dieses Video schaust, solltest du das Einmaleins beherrschen und bereits wissen, wie du schriftlich addierst.

Nach diesem Video wirst du darauf vorbereitet sein, die schriftliche Division zu lernen.

Transkript Schriftlich multiplizieren

Erich der Erpel hat es sich zur Aufgabe gemacht in seiner Reiseagentur sämtliche Reisen und Kilometer für Zugvögel zu planen. Und dazu muss er unglaublich gut schriftlich multiplizieren können. Mithife der schriftlichen Multiplikation kann er zum Beispiel die Gesamtkilometer einer Reise berechnen. Für einen Schwarm Vögel hat er 3758 km in 4 Etappen geplant. Um die ungefähre Kilometeranzahl zu wissen, kann er dies zunächst schätzen, indem er besonders geschickt rundet. So rundet er 3758 auf 4000. 4000 mal 4 sind sechszehntausend. Also weiß Erich, dass die Vögel insgesamt ungefähr sechszehntausend km zurücklegen müssen. Will er jedoch die genaue Kilometerzahl wissen, muss er schriftlich multiplizieren. Dabei rechnen wir stellenweise. Hier also 3000+700+50+8. Jeder Summand wird vor der Addition mit 4 multipliziert. Beim schriftlichen Multiplizieren schreiben wir die Zahlen so nebeneinander und beginnen bei der Einerstelle, rechnen also zunächst 4 mal 8. Das sind 32. Wir schreiben die 2 direkt unter die 4 und merken uns die 3 für die Zehner. Dies nennt man einen Übertrag. Den kennst du ja schon aus der schriftlichen Addition und Subtraktion. Machen wir mit der nächsten Stelle weiter: 4 mal 5 sind 20. Jetzt dürfen wir die gemerkte 3 natürlich nicht vergessen und addieren sie. Wir erhalten 23. Wir merken uns also eine 2 bei den Hundertern und notieren die 3 im Ergebnis. Rechnen wir weiter bei den Hundertern: 4 mal 7 sind 28. 28 + 2 sind 30. Wir schreiben hier also eine 0 hin und merken uns 3. Bei der Tausenderstelle rechnen wir: 4 mal 3. Das sind 12. Addieren wir den Übertrag 3, so erhalten wir 15. Da dies die letzte Stelle ist, mit der wir in dieser Rechnung gerechnet haben, können wir hier die 15 direkt notieren. Als Endergebnis erhalten wir: fünfzehntausendzweiunddreißig. Ganz schön sportlich diese Zugvögel, oder? Bei so einer Reise muss natürlich auch eine gewisse Menge an Proviant eingepackt werden. Und zwar pro Vogel eintausendvierhundertdreiundneunzig Gramm. In diesem Schwarm sind 78 Vögel. Um die Gesamtanzahl an Futter auszurechnen, können wir wieder schriftlich multiplizieren. Aber lass uns doch zunächst einmal Schätzen. 1500 mal 80 sind Einhundertzwanzigtausend. Beim schriftlichen Multiplizieren rechnen wir wieder stellenweise. Teilen wir hier die Faktoren in ihre Stellen auf, so wäre dies also 1000+400+90+3 mal 70+8. Wie du siehst, haben wir diesmal auch im 2. Faktor mehr als eine Stelle. Wir beginnen mit der Zehnerstelle: Wir rechnen also 7 mal 3. Das sind 21. Wir schreiben eine 1 ins Ergebnis und merken uns eine 2. Hierbei ist es wichtig, dass wir die erste Zahl des Ergebnisses direkt unter die Stelle schreiben, mit der wir rechnen. Machen wir weiter: 7 mal 9 sind 63. Addieren wir den Übertrag von 2, so erhalten wir 65. Wir notieren eine 5 und merken uns eine 6. 7 mal 4 sind 28 und 28 plus 6 sind 34. Wir notieren die 4 und merken uns eine 3. Nun rechnen wir 7 mal 1 + 3. Das sind 10 und da dies die letzte Stelle im 1. Faktor war, können wir die 10 direkt notieren. Nun haben wir im 2. Faktor noch die 8 stehen mit der wir ebenfalls multiplizieren müssen. Hier gehen wir mit demselben Muster vor: Wir beginnen also mit 8 mal 3 und erhalten 24; notieren die 4 also hier und merken uns eine 2. Auch hier ist es wichtig, die Ziffer direkt unter der Einerstelle zu notieren. Berechnen wir die weiteren Stellen so haben wir für diese Stelle das Ergebnis elftausendneunhundertvierundvierzig. Als letzten Schritt müssen wir nun die beiden Ergebnisse der Stellen noch addieren und erhalten so das Endergebnis. Die Vögel müssen also insgesamt einhundertsechzehntausendvierhundertvierundfünfzig Gramm Futter einpacken. Während Erich auf seinen nächsten Kunden wartet, fassen wir zusammen: Bei der schriftlichen Multiplikation können wir zunächst das Ergebnis schätzen, indem wir die Zahlen geschickt runden. Dann rechnen wir stellenweise. Dabei achten wir darauf, dass wir die letzte Ziffer des Ergebnisses unter die Stelle schreiben, mit der wir rechnen. Wir können uns Überträge merken, indem wir sie notieren. Haben wir im 2. Faktor mehrere Stellen, so addieren wir die Ergebnisse am Ende zusammen und erhalten das Endergebnis. Sieht so aus als hätte Erich nun einen ganz besonderen Kunden. Zum Glück hat er für diesen ein ganz individuelles Angebot parat.

50 Kommentare

50 Kommentare
  1. Ich hab es auch sehr gut verstanden 👍🙂

    Von Mini_Maus1, vor 11 Tagen
  2. cooles Video

    Von Mark, vor 28 Tagen
  3. Cooles Video ☺️

    Von Romy, vor etwa einem Monat
  4. tolles wiedeo super erklärt und top figuren

    Von Franzi, vor 2 Monaten
  5. Ziemlich lang das Video

    Von The Rex T., vor 4 Monaten
Mehr Kommentare

Schriftlich multiplizieren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Schriftlich multiplizieren kannst du es wiederholen und üben.
  • Berechne das Ergebnis der schriftlichen Multiplikation.

    Tipps

    Du gehst immer Schritt für Schritt vor. Zuerst berechnest du die Multiplikation der kleinsten Stellen. Die Einer dieses Teilergebnisses schreibst du auf und die Zehner merkst du dir als Übertrag.

    Dann berechnest du die nächste Stelle und addierst zu deiner Zahl den Übertrag der vorherigen Stelle. Wieder schreibst du die Einer des Teilergebnisses in die korrekte Stelle und merkst dir die Zehner.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Zuerst schreiben wir die Rechnung auf. Dann beginnen wir bei den Einern. Hier lautet die Rechnung:

    $8 \cdot 4=32$

    Wir schreiben eine $2$ ins Ergebnis und merken uns eine $3$.“

    • Du gehst immer Schritt für Schritt vor. Zuerst berechnest du die Multiplikation der kleinsten Stellen. Die Einer dieses Teilergebnisses schreibst du auf und die Zehner merkst du dir als Übertrag.
    „Als Nächstes berechnen wir die Zehner. Hier rechnen wir:

    $5 \cdot 4=20$

    Dazu addieren wir unseren Übertrag von eben und erhalten:

    $20+3=23$.

    Wir notieren also eine $3$ und merken uns eine $2$.“

    • Dann berechnest du die nächste Stelle und addierst zu deiner Zahl den Übertrag der vorherigen Stelle. Wieder schreibst du die Einer des Teilergebnisses in die korrekte Stelle und merkst dir die Zehner.
    „Die nächste Rechnung lautet:

    $7\cdot 4=28$

    Mit dem Übertrag erhalten wir:

    $28+2=30$

    Also schreiben wir eine $0$ auf und merken uns eine $3$.“

    • Jetzt wiederholen wir das Vorgehen so lange, bis alle Stellen berechnet sind.
    „Die letzte Rechnung lautet:

    $3 \cdot 4 =12$

    Mit dem Übertrag erhalten wir:

    $12+3=15$

    Das schreiben wir auf und erhalten das Ergebnis: $15032$“

    • Bei der letzten Rechnung musst du dir keinen Übertrag mehr merken. Du kannst beide Stellen aufschreiben.
  • Bestimme die korrekten Aussagen zur schriftlichen Multiplikation.

    Tipps

    Runden ist hilfreich, um die Größe des Ergebnisses zu schätzen.

    Schreibst du zum Beispiel eine $1$ in die Zehnerstelle, entspricht das einer $10$. Schreibst du sie in die Einerstelle, ist es eine $1$. Das ist ein großer Unterschied.

    Lösung

    Diese Aussagen sind falsch:

    „Statt die schriftliche Multiplikation anzuwenden, kannst du auch Runden. Das ist genauso präzise.“

    • Runden ist hilfreich, um die Größe des Ergebnisses zu schätzen. Es kann aber nicht die schriftliche Multiplikation selbst ersetzen.
    „Bei der schriftlichen Multiplikation musst du alle Stellen auf einmal berechnen.“

    • Die schriftliche Multiplikation ist hilfreich, weil du hier Schritt für Schritt vorgehen kannst. Jede Stelle einzeln und nacheinander zu berechnen ist einfacher, als alles auf einmal zu erledigen.
    Diese Aussagen sind richtig:

    „Beim schriftlichen Multiplizieren berechnen wir das Ergebnis, indem wir stellenweise multiplizieren und anschließend die Teilergebnisse addieren.“

    „Ist das Ergebnis einer einzelnen Multiplikation zweistellig, musst du dir einen Übertrag merken.“

    • Das ist das Vorgehen bei der schriftlichen Multiplikation.
    „Rechnest du mit den Zehnern des zweiten Faktors (der rechten Zahl), musst du das erste notierte Produkt direkt unter der Zehnerstelle des zweiten Faktors aufschreiben.“

    • Du musst auf die genaue Stelle achten, weil sonst das Ergebnis falsch wird. Schreibst du zum Beispiel eine $1$ in die Zehnerstelle, entspricht das einer $10$. Schreibst du sie in die Einerstelle, ist es eine $1$. Das ist ein großer Unterschied.
  • Ermittle die Ergebnisse der Multiplikationen.

    Tipps

    Die Lösungen kannst du mit der schriftlichen Multiplikation bestimmen. Rechne dabei Stelle für Stelle und beachte den Übertrag. Hat der rechte Faktor zwei Stellen, so berechne die Multiplikationen für jede Stelle einzeln und addiere anschließend.

    Eine der Rechnungen kannst du so beginnen.

    Lösung

    Die Lösungen kannst du mit der schriftlichen Multiplikation bestimmen. Rechne dabei Stelle für Stelle und beachte den Übertrag. Hat der rechte Faktor zwei Stellen, berechne die Multiplikationen für jede Stelle einzeln und addiere anschließend. Auf der linken Seite siehst du die erste Rechnung.

    Dann erhältst du:

    • $321 \cdot 7=2247$
    • $459 \cdot 12=5508$
    • $921 \cdot 8=7368$
    • $693 \cdot 18=12474$
  • Bestimme das Ergebnis der Rechnung.

    Tipps

    Beim ersten Beispiel musst du die Anzahl der Etappen mit der Länge der Etappe multiplizieren.

    So sieht der Beginn der ersten Rechnung aus.

    Lösung

    Die Lösungen kannst du mit der schriftlichen Multiplikation bestimmen. Rechne dabei Stelle für Stelle und beachte den Übertrag. Hat der rechte Faktor zwei Stellen, berechne die Multiplikationen für jede Stelle einzeln und addiere anschließend. Auf der linken Seite siehst du die erste Rechnung. So erhältst du:

    „Sarah fährt mit dem Fahrrad $14$ Etappen von jeweils $251~\text{km}$. Also fährt sie insgesamt $3514~\text{km}$.“

    • Hier rechnest du: $251~\text{km}\cdot 14=3514~\text{km} $
    „Eine Eichhörnchenfamilie versteckt Futter an $564$ verschiedenen Orten. In jedem Versteck lagern $13$ Eicheln, also hat die Familie insgesamt $7332$ Eicheln.“

    • Hier lautet die Rechnung: $564 \cdot 13= 7332$
    „Ein Pilot fliegt $23$ Mal von Berlin nach Moskau. Bei einem Flug legt er $1818~\text{km}$ zurück. Insgesamt entspricht das einer Strecke von $41814~\text{km}$.“

    • Hier musst du $1818~\text{km} \cdot 23=41814~\text{km} $ rechnen.
    „Ein Wasserturm hat $4$ Becken, in die jeweils $43528$ Liter Wasser passen. Zusammen können dort also $174112$ Liter gespeichert werden.“

    • Hier erhältst du: $43528~\text{Liter} \cdot 4 =174112~\text{Liter} $
  • Berechne das Ergebnis der schriftlichen Multiplikation.

    Tipps

    Du kannst die Lücken einsetzen, indem du selbst rechnest und anschließend deine Rechnung mit den Lücken vergleichst.

    Berechne hier zuerst die Multiplikation mit der Zehnerstelle des zweiten Faktors (die rechte Zahl). Schreibe dabei die Einerstelle deines Teilergebnisses direkt unter die Zehnerstelle des zweiten Faktors - in diesem Fall die $1$ unter die $1$ der $14$.

    Danach kannst du die Multiplikation mit der Einerstelle des zweiten Faktors berechnen. Hier musst du die Einerstelle des Teilergebnisses direkt unter die Einerstelle des zweiten Faktors schreiben - hier ist es die $4$ unter die $4$ der $14$.

    Lösung

    So sieht die komplette Multiplikation aus. Du kannst die Lücken einsetzen, indem du selbst rechnest und anschließend deine Rechnung mit den Lücken vergleichst.

    Berechne hier zuerst die Multiplikation mit der Zehnerstelle des zweiten Faktors (die rechte Zahl). Schreibe dabei die Einerstelle deines Teilergebnisses direkt unter die Zehnerstelle des zweiten Faktors.

    Danach kannst du die Multiplikation mit der Einerstelle des zweiten Faktors berechnen. Hier musst du die Einerstelle des Teilergebnisses direkt unter die Einerstelle des zweiten Faktors schreiben.

    Zuletzt kannst du die beiden Zahlen addieren. So erhältst du das Ergebnis der Multiplikation.

  • Ermittle, ob hier richtig gerechnet wurde.

    Tipps

    So sieht der Beginn einer der Rechnungen aus.

    Lösung

    Berechne die Lösungen der Rechnungen selbst mit der schriftlichen Multiplikation. So erhältst du, dass diese Rechnungen falsch sind:

    „$6284 \cdot 321 \neq 2019164$“

    • Hier erhältst du: $6284 \cdot 321=2017164$
    „$9863 \cdot 5431 \neq 53595953$“

    • Das richtige Ergebnis lautet: $9863 \cdot 5431=53565953$
    Diese Rechnungen sind korrekt:

    „$5783 \cdot 423=2446209$“

    „$3421\cdot 2345=8022245$“

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

10.816

Lernvideos

44.233

Übungen

38.866

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden