Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Grundrechenarten bis 1 Million – Mit 11 multiplizieren

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 91 Bewertungen
Die Autor*innen
Avatar
Steph Richter
Grundrechenarten bis 1 Million – Mit 11 multiplizieren
lernst du in der 5. Klasse - 6. Klasse

Grundrechenarten bis 1 Million – Mit 11 multiplizieren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Grundrechenarten bis 1 Million – Mit 11 multiplizieren kannst du es wiederholen und üben.
  • Gib wieder, wie du Zahlen mit $11$ multiplizierst.

    Tipps

    Wie wir vorgehen wollen, leitet sich vom schriftlichen Multiplizieren ab:

    $\begin{array}{ccccccc} 1&2&3&4&\cdot&1&1\\ \hline &&1&2&3&4&0\\ &&&1&2&3&4\\ \hline &&1&3&5&7&4\\ \end{array}$

    Bei der Multiplikation mit $10$ wird nur eine $0$ hinten angehängt, also sozusagen geshiftet. Für die Multiplikation mit $11$ addieren wir das geshiftete Ergebnis zur Zahl.

    Es gilt: $11\cdot 11= 1 \qquad {1+1} \qquad 1= 121$

    Lösung

    Korrekt sind folgende Aussagen:

    „Anstatt mit $11$ zu multiplizieren, könnte man auch einmal mit $10$ und einmal mit $1$ multiplizieren und diese Ergebnisse addieren.“

    • Da $10+1=11$ gilt, ist es möglich die $11$ aufzuteilen. Zum Beispiel: $123\cdot11=123\cdot(10+1)=123\cdot10+123\cdot1=1230+123=1353$
    „Es gilt: $123\cdot 11=1353$“

    „Grundsätzlich ist es egal, ob du von links nach rechts oder rechts nach links die Zahlen bestimmst, aber wenn du den Übertrag benötigst, ist es einfacher von rechts nach links vorzugehen.“

    • Ein bisschen aufpassen musst du, wenn beim Addieren Zahlen größer oder gleich $10$ auftauchen, wir also einen Übertrag machen müssen. Mit dem Übertrag ist es manchmal leichter, die Rechnung von rechts nach links zu machen, da du den Übertrag direkt zur nächsten Zahl schreiben kannst. Lass uns dazu ein Beispiel rechnen: $1975\cdot 11 $.
    Wir fangen einfach rechts an:

    1. Die $5$ abschreiben.
    2. Dann rechnen wir $5+7=12$. Die $2$ schreiben wir hin und die $1$ markieren wir uns hier oben als Übertrag.
    3. Nun $9+7=16$. Die $6$ schreiben wir hin und die $1$ als Übertrag.
    4. $9+1=10$. Die $0$ schreiben wir uns hin und die $1$ wieder als Übertrag.
    5. Als letzte Zahl die $1$ abschreiben. Und jetzt rechnen wir den Übertrag dazu!
    $\begin{array}{ccccc} \small 1&\small 1&\small 1\\ 1&0&6&2&5\\ \hline 2&1&7&2&5\\ \\ \end{array}$

    Die folgenden Aussagen sind falsch:

    „Anstatt mit $11$ zu multiplizieren, könnte man auch einmal mit $10$ und einmal mit $1$ multiplizieren und diese Ergebnisse multiplizieren.“

    • Anstatt mit $11$ zu multiplizieren, könnte man auch einmal mit $10$ und einmal mit $1$ multiplizieren und diese Ergebnisse nicht multiplizieren, sondern addieren, da $10+1=11$.
    „So kannst du die Multiplikation mit $11$ vereinfachen: Die erste und zweite Zahl abschreiben und danach immer die Nachbarn addieren.“

    • Eine einfache Variante für die Multiplikation mit $11$ funktioniert so: Die erste und letzte Zahl abschreiben und in der Mitte immer die Nachbarn addieren.
  • Berechne die Produkte bei der Multiplikation mit $11$.

    Tipps

    Wenn man eine beliebige Zahl mit $11$ multipliziert, ergibt es das Gleiche, wie wenn man die Zahl erst mit $10$ und anschließend mit $1$ multipliziert und die Ergebnisse addiert. Das Vorgehen ist ähnlich zur schriftlichen Multiplikation.

    $\begin{array}{cccccc} 1&2&3&\cdot&1&1\\ \hline &&1&2&3&0\\ &&&1&2&3\\ \hline &&1&3&5&3\\ \end{array}$

    Wir können die Rechnung vereinfachen, indem wir zum Beispiel von links nach rechts zuerst die $1.$ Zahl hinschreiben, anschließend die $1.$ Zahl + die $2.$, die $2.$ + die $3.$ ...

    Die letzte Zahl wird ebenso wie die erste Zahl abgeschrieben.

    Lösung

    Wenn man eine beliebige Zahl mit $11$ multipliziert, dann ist es das Gleiche, wie wenn man die Zahl erst mit $10$ und anschließend mit $1$ multipliziert und die Ergebnisse addiert. Wenn wir das untereinander schreiben, dann hätten wir: einmal für die $\cdot10$ die Zahl mit einer $0$ hinten dran und darunter um eins versetzt die normale Zahl. Diese müssen wir dann nur noch addieren.

    $\begin{array}{ccccccc} 1&2&3&4&\cdot&1&1\\ \hline &&1&2&3&4&0\\ &&&1&2&3&4\\ \hline &&1&3&5&7&4\\ \end{array}$

    Diese Rechnung können wir auch beschleunigen. Dazu schreiben wir von links nach rechts zuerst die $1.$ Zahl hin, anschließend die $1.$ Zahl + die $2.$, die $2.$ + die $3.$, die $3.$ + die $4.$ und dann noch die $4.$ Zahl. Ob du das Ganze von links nach rechts oder rechts nach links machst, ist in diesem Fall egal.

    Also: $1\qquad 1+2 \qquad 2+3 \qquad 3+4 \qquad 4 \qquad \Rightarrow \qquad 13574$

    Ebenso gilt:

    • $12521\cdot 11= 137731$
    • $12450\cdot 11=136950$
    Ein bisschen aufpassen musst du, wenn beim Addieren Zahlen größer oder gleich $10$ auftauchen, wir also einen Übertrag machen müssen. Mit dem Übertrag ist es manchmal leichter, die Rechnung von rechts nach links zu machen.

    Beim Lösen von $1975\cdot 11$ fangen wir einfach rechts an:

    1. Die $5$ abschreiben.
    2. Dann rechnen wir $5+7=12$. Die $2$ schreiben wir hin und die $1$ markieren wir uns hier oben als Übertrag.
    3. Nun $9+7=16$. Die $6$ schreiben wir hin und die $1$ als Übertrag.
    4. $9+1=10$. Die $0$ schreiben wir uns hin und die $1$ wieder als Übertrag.
    5. Als letzte Zahl die $1$ abschreiben. Und jetzt rechnen wir den Übertrag dazu!
    $1975\cdot 11= ?$

    $\begin{array}{ccccc} \small 1&\small 1&\small 1\\ 1&0&6&2&5\\ \hline 2&1&7&2&5\\ \end{array}$

  • Ermittle die Fehler in den Rechnungen.

    Tipps

    Denke daran, dass du alle Nachbarn miteinander addieren musst. Die jeweiligen Ergebnisse schreibst du dann zwischen die erste und die letzte Zahl.

    So kannst du vorgehen: $33333\cdot11:$ $3 \qquad 3+3 \qquad 3+3 \qquad 3+3 \qquad 3+3 \qquad 3 \qquad \Rightarrow \qquad 33333\cdot11=366663$

    Lösung

    Wenn man eine beliebige Zahl mit $11$ multipliziert, dann ist es das Gleiche, wie wenn man die Zahl erst mit $10$ und anschließend mit $1$ multipliziert und die Ergebnisse addiert. Wenn wir das untereinander schreiben, dann hätten wir für die $\cdot10$ einmal die Zahl mit einer $0$ hinten dran, und darunter um eins versetzt die normale Zahl. Diese müssen wir dann nur noch addieren.

    Diese Rechnung können wir auch beschleunigen. Dazu schreiben wir von links nach rechts zuerst die $1.$ Zahl hin, anschließend die $1.$ Zahl + die $2.$, die $2.$ + die $3.$, die $3.$ + die $4.$, die $4.$ + die $5.$ und dann noch mal die $5.$ Zahl. Ob du das Ganze von links nach rechts oder rechts nach links machst, ist in diesem Fall egal.

    • $14253\cdot11:$ $1 \qquad 1+4 \qquad 4+2 \qquad 2+5 \qquad 5+3 \qquad 3 \qquad \Rightarrow \qquad 14253\cdot11=156783$
    • $61813\cdot11:$ $6 \qquad 6+1 \qquad 1+8 \qquad 8+1 \qquad 1+3 \qquad 3 \qquad \Rightarrow \qquad 61813\cdot11=679943$
    • $44444\cdot11:$ $4 \qquad 4+4 \qquad 4+4 \qquad 4+4 \qquad 4+4 \qquad 4 \qquad \Rightarrow \qquad 44444\cdot11=488884$
    • $32717\cdot11:$ Hier wurde das Ergebnis verkehrt herum aufgeschrieben. Richtig lautet es: $3 \qquad 3+2 \qquad 2+7 \qquad 7+1 \qquad 1+7 \qquad 7 \qquad \Rightarrow \qquad 32717\cdot11=359887$
  • Bestimme das Produkt mit $11$ und beachte dabei den Übertrag.

    Tipps

    Bei Rechnungen mit Übertrag ist es leichter, von rechts nach links vorzugehen.

    $39\cdot 11= \quad ?$

    Hier schreibst du zuerst die letzte Zahl $9$ ab. Dann addierst du $9+3=12$, die $2$ notierst du links von der $9$ und die $1$ schreibst du oben als Übertrag.

    Lösung
    • $26892\cdot 11=295812$
    Ein bisschen aufpassen musst du, wenn beim Addieren Zahlen größer oder gleich $10$ auftauchen, wir also einen Übertrag machen müssen. Mit dem Übertrag ist es manchmal leichter, die Rechnung von rechts nach links zu machen. Wir fangen einfach rechts an:

    1. Die $2$ abschreiben.
    2. Dann rechnen wir $2+9=11$. Die $1$ schreiben wir hin und die $1$ markieren wir uns hier oben als Übertrag.
    3. Danach rechnen wir $9+8=17$. Die $7$ schreiben wir hin und die $1$ markieren wir uns hier oben als Übertrag.
    4. Nun $6+8=14$. Die $4$ schreiben wir hin und die $1$ als Übertrag.
    5. $2+6=8$. Die $8$ schreiben wir uns hin.
    6. Als letzte Zahl die $2$ abschreiben. Und jetzt rechnen wir den Übertrag dazu!
    $26892\cdot 11=\quad ?$

    $\begin{array}{ccccc} &\small 1&\small 1&\small 1\\ 2&8&4&7&1&2\\ \hline 2&9&5&8&1&2\\ \end{array}$

    Analog folgt:

    • $34289\cdot 11=377179$
    • $99999\cdot 11=1099989$
    • $12121\cdot 11=133331$ Hier brauchst du keinen Übertrag.

  • Bestimme das Produkt.

    Tipps

    Multiplizieren mit $11$ ist das Gleiche wie die Multiplikation mit $10+1$. Bei der Multiplikation mit $10$ wird nur eine $0$ hinten angehängt, also sozusagen geshiftet. Für die Multiplikation mit $11$ addieren wir das geshiftete Ergebnis zur Zahl.

    So kannst du vorgehen: Erste und letzte Zahl abschreiben und in der Mitte immer die Nachbarn addieren.

    $1331\cdot 11 = 14641$

    Lösung

    Wenn man eine beliebige Zahl mit $11$ multipliziert, dann ist es das Gleiche, wie wenn man die Zahl erst mit $10$ und anschließend mit $1$ multipliziert und die Ergebnisse addiert. Wenn wir das untereinander schreiben, dann hätten wir für die $\cdot10$ einmal die Zahl mit einer $0$ hinten dran, und darunter um eins versetzt die normale Zahl. Diese müssen wir dann nur noch addieren.

    $\begin{array}{cccccc} 1&2&3&\cdot&1&1\\ \hline &&1&2&3&0\\ &&&1&2&3\\ \hline &&1&3&5&3\\ \end{array}$

    Diese Rechnung können wir auch beschleunigen. Dazu schreiben wir von links nach rechts zuerst die $1.$ Zahl hin, anschließend die $1.$ Zahl + die $2.$, die $2.$ + die $3.$ und dann noch mal die $3.$ Zahl. Ob du das Ganze von links nach rechts oder rechts nach links machst, ist in diesem Fall egal.

    Also:

    $1\qquad 1+2 \qquad 2+3 \qquad 3 \qquad \Rightarrow \qquad 1353$

    Ebenso gilt:

    • $1234\cdot 11= 13574$
    • $12450\cdot 11=136950$

  • Zeige, wie man mit $111$ multiplizieren kann.

    Tipps

    Da du diesmal mit einer dreistelligen Zahl multiplizierst, musst du auch drei benachbarte Zahlen betrachten.

    So rechnest du bei $123\cdot 111$:

    1. $1$
    2. $1+2=3$
    3. $1+2+3=6$
    4. $2+3=5$
    5. $3$

    Lösung

    Anstatt mit $111$ zu multiplizieren, könnte man auch jeweils mit $100$, $10$ und $1$ multiplizieren und die Ergebnisse am Ende addieren.

    Dann erhalten wir:

    • $1231\cdot 100=123100$ Das ist theoretisch ein Shift um zwei Stellen.
    • $1231\cdot 10=12310$ Das ist theoretisch ein Shift um eine Stelle.
    • $1231\cdot 1=1231$
    Danach addieren wir:

    $\begin{array}{ccccccc} &1&2&3&1&0&0\\ +&&1&2&3&1&0\\ +&&&1&2&3&1\\ \hline &1&3&6&6&4&1\\ \end{array}$

    Aber es geht auch schneller. Zum Beispiel von links nach rechts:

    1. Wir schreiben zunächst die erste Zahl hin. $\Rightarrow 1$
    2. Wir addieren die erste und zweite Zahl. $\Rightarrow 1+2=3$
    3. In der Mitte addieren wir immer die drei benachbarten Zahlen. $\Rightarrow 1+2+3=6$ und $\Rightarrow 2+3+1=6$
    4. Wir addieren die vorletzte und letzte Zahl. $\Rightarrow 3+1=4$
    5. Wir schreiben die letzte Zahl hin. $\Rightarrow 1$
    $\Rightarrow 136641$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.156

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.930

Lernvideos

37.078

Übungen

34.333

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden