Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Grundrechenarten bis 1 Million – Zweistellige Zahlen quadrieren

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.7 / 25 Bewertungen
Die Autor*innen
Avatar
Steph Richter
Grundrechenarten bis 1 Million – Zweistellige Zahlen quadrieren
lernst du in der 5. Klasse - 6. Klasse

Grundrechenarten bis 1 Million – Zweistellige Zahlen quadrieren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Grundrechenarten bis 1 Million – Zweistellige Zahlen quadrieren kannst du es wiederholen und üben.
  • Tipps

    Wir berechnen das Ergebnis Schritt für Schritt von links nach rechts. Wir beginnen also mit der Ziffer des Ergebnisses ganz links.

    Betrachte zum Beispiel $13^2$: Für die erste Zahl deines Ergebnisses rechnest du $1^2=1$

    Betrachte zum Beispiel $13^2$: Für die zweite Zahl deines Ergebnisses rechnest du $2\cdot 1\cdot 3=6$

    Lösung

    Das Quadrieren von zweistelligen Zahlen muss dir gar keine Angst machen. Mit diesen drei Schritten kannst du es auf die Berechnung von einstelligen Quadratzahlen vereinfachen. Betrachten wir zum Beispiel: $31^2$

    • Die erste Ziffer deines Ergebnisses erhältst du, indem du die linke Ziffer quadrierst. Du rechnest also $3^2=9$ und schreibst die $9$ an die erste Stelle deines Ergebnisses.
    • Die zweite Ziffer deines Ergebnisses erhältst du, indem du $2\ \cdot$ linke Ziffer $\cdot$ rechte Ziffer rechnest. Du rechnest also $2\cdot 1 \cdot 3=6$ und schreibst die $6$ an die zweite Stelle deines Ergebnisses.
    • Die dritte Ziffer deines Ergebnisses erhältst du, indem du die rechte Ziffer quadrierst. Du rechnest also $1^2=1$ und schreibst die $1$ an die letzte Stelle deines Ergebnisses.
    Insgesamt erhältst du also $31^2=961$.

    In diesem Beispiel brauchten wir keinen Übertrag, es kann aber sein, dass du bei einem der Schritte eine Zahl größer oder gleich $10$ erhältst. Ist das beim zweiten oder dritten Schritt der Fall, so notierst du die hintere Ziffer direkt und die vordere schreibst du als Übertrag, den du am Ende addierst.

  • Tipps

    Es kann sein, dass du bei einem deiner Rechenschritte eine Zahl größer oder gleich $10$ erhältst. Dann notierst du die hintere Ziffer direkt und die vordere schreibst du als Übertrag, den du am Ende addierst

    Erhältst du eine Zahl größer oder gleich $100$, haben wir einen sehr weitreichenden Übertrag, den du auf die zwei Ziffern davor verteilst.

    Betrachte zum Beispiel $99^2$.

    Im ersten Schritt erhältst du $81$, die du direkt hinschreiben kannst.

    Im zweiten Schritt berechnest du $162$ als Ergebnis. Bei diesem sehr weitreichenden Übertrag notierst du zunächst die $2$ normal, fügst sie also dem Ergebnis an. Danach schreibst du die $6$ als Übertrag über die $1$ und die $1$ als Übertrag über die $8$ der $81$.

    Lösung

    Das Quadrieren von zweistelligen Zahlen muss dir gar keine Angst machen. Mit diesen drei Schritten kannst du es auf die Berechnung von einstelligen Quadratzahlen vereinfachen:

    1. Die linke(n) Ziffer(n) deines Ergebnisses erhältst du, indem du die linke Ziffer quadrierst.
    2. Die mittlere Ziffer deines Ergebnisses erhältst du, indem du $2\ \cdot$ linke Ziffer $\cdot$ rechte Ziffer rechnest.
    3. Die letzte Ziffer deines Ergebnisses erhältst du, indem du die rechte Ziffer quadrierst.
    Beispiel 1:

    Beginnen wir mit $22^2 = 484$:

    1. $2^2=4$
    2. $2\cdot 2 \cdot 2=8$
    3. $2^2=4$
    Wir erhalten also $484$.

    Beispiel 2:

    Nun betrachten wir $31^2= 961$:

    1. $3^2=9$
    2. $2\cdot 3 \cdot 1=6$
    3. $1^2=1$
    Wir erhalten also $961$.

    In diesen Beispielen brauchten wir keinen Übertrag. Es kann aber sein, dass du bei einem der Schritte eine Zahl größer oder gleich $10$ erhältst, dann notierst du die hintere Ziffer direkt und die vordere schreibst du als Übertrag, den du am Ende addierst.

    Beispiel 3:

    Betrachten wir dazu $47^2=2209$:

    1. $4^2=16$: Da vor der $6$ keine Ziffer steht, können wir den Übertrag zu einer imaginären $0$ addieren und die $16$ notieren.
    2. $2\cdot4\cdot 7= 56$: Wir schreiben die $6$ hin und notieren die $5$ als Übertrag über der $6$ der $16$ davor.
    3. $7^2=49$: Wir schreiben die $9$ hin und notieren die $4$ als Übertrag über der $6$ der $56$ davor.
    Wir erhalten: $\begin{array}{cccccc} &\small +5 &\small +4\\ 1&6&6&9\\ \hline 2&2&0&9\\ \end{array}$

    Beispiel 4:

    Für $65^2=4225$ gehen wir wie folgt vor:

    1. $6^2=36$: Da vor der $6$ keine Ziffer steht, können wir den Übertrag zu einer imaginären $0$ addieren und die $36$ notieren.
    2. $2\cdot6\cdot 5= 60$: Wir schreiben die $0$ hin und notieren die $6$ als Übertrag über der $6$ der $36$ davor.
    3. $5^2=25$: Wir schreiben die $5$ hin und notieren die $2$ als Übertrag über der $0$ der $60$ davor.
    Wir erhalten: $\begin{array}{cccccc} &\small +6 &\small +2\\ 3&6&0&5\\ \hline 4&2&2&5\\ \end{array}$

    Beispiel 5:

    Bei $88^2=7744$ rechnen wir:

    1. $8^2=64$: Da vor der $4$ keine Ziffer steht, können wir den Übertrag zu einer imaginären $0$ addieren und die $64$ notieren.
    2. $2\cdot8\cdot 8= 128$: Wir haben also einen sehr weitreichenden Übertrag, wir schreiben die $8$ hin und notieren die $2$ als Übertrag über der $4$ und die $1$ als Übertrag über der $6$ der $64$ davor.
    3. $8^2=64$: Wir schreiben die $4$ hin und notieren die $6$ als Übertrag über der $8$ der $128$ davor.
    Wir erhalten: $\begin{array}{cccccc} +1&\small +2 &\small +6\\ 6&4&8&4\\ \hline 7&7&4&4\\ \end{array}$

  • Tipps

    Die letzte Ziffer deines Ergebnisses erhältst du, indem du die rechte Ziffer quadrierst.

    Ist dein Ergebnis einer Zahl größer oder gleich $10$, brauchst du einen Übertrag. Dazu schreibst du die hintere Zahl direkt hin und notierst die vordere über der Zahl davor.

    Lösung

    Das Quadrieren von zweistelligen Zahlen muss dir gar keine Angst machen. Mit diesen drei Schritten kannst du es auf die Berechnung von einstelligen Quadratzahlen vereinfachen:

    1. Die linke(n) Ziffer(n) deines/-r Ergebnisse(s) erhältst du, indem du die linke Ziffer quadrierst.
    2. Die mittlere Ziffer deines Ergebnisses erhältst du, indem du $2\ \cdot$ linke Ziffer $\cdot$ rechte Ziffer rechnest.
    3. Die letzte Ziffer deines Ergebnisses erhältst du, indem du die rechte Ziffer quadrierst.
    Beispiel 1: $~21^2=441$

    1. $2^2=4$
    2. $2\cdot 2 \cdot 1=4$
    3. $1^2=1$
    Also erhältst du $441$.

    Beispiel 2: $~45^2=2025$

    1. $4^2=16$: Hier hättest du theoretisch einen Übertrag, da vor der $6$ aber keine Ziffer steht, kannst du direkt $16$ notieren.
    2. $2\cdot 4 \cdot 5=40$: Die $0$ kannst du sofort hinschreiben, die $4$ notierst du als Übertrag über der $6$ der $16$ davor.
    3. $5^2=25$: Die $5$ kannst du sofort hinschreiben, die $2$ notierst du als Übertrag über der $0$ der $40$ davor.
    Wir erhalten: $\begin{array}{cccccc} &\small +4 &\small +2\\ 1&6&0&5\\ \hline 2&0&2&5\\ \end{array}$

    Ebenso erhältst du:

    • $34^2=1156$
    • $87^2=7569$
    • $72^2=5184$

  • Tipps

    Nicht zu allen Zahlen findest du die passende Quadratzahl bzw. die passende Rechnung.

    Grundsätzlich gehen wir so vor:

    1. Die linke Ziffer quadrieren.
    2. Dann $2\ \cdot$ linke Ziffer $\cdot$ rechte Ziffer rechnen.
    3. Die rechte Ziffer quadrieren.
    4. Eventuell entstandene Überträge addieren.
    Lösung

    Grundsätzlich gehen wir so vor:

    1. Die linke Ziffer quadrieren.
    2. Dann $2\ \cdot$ linke Ziffer $\cdot$ rechte Ziffer rechnen.
    3. Die rechte Ziffer quadrieren.
    4. Eventuell entstandene Überträge addieren.
    Wir können den Zahlen $2116$, $3025$ und $4624$ folgende Potenzen zuordnen:
    • $46^2=2116$
    1. $4^2=16$
    2. $2\cdot 4 \cdot 6 =48$
    3. $6^2=36$
    4. $\begin{array}{cccccc} &\small +4 &\small +3\\ 1&6&8&6\\ \hline 2&1&1&6\\ \end{array}$
    • $55^2=3025$
    1. $5^2=25$
    2. $2\cdot 5 \cdot 5 =50$
    3. $5^2=25$
    4. $\begin{array}{cccccc} &\small +5 &\small +2\\ 2&5&0&5\\ \hline 3&0&2&5\\ \end{array}$
    • $68^2=4624$
    1. $6^2=36$
    2. $2\cdot 6 \cdot 8 =96$
    3. $8^2=64$
    4. $\begin{array}{cccccc} &\small +9 &\small +6\\ 3&6&6&4\\ \hline 4&6&2&4\\ \end{array}$
    Den Zahlen $729$, $1024$ und $1936$ ordnen wir folgende Potenzen zu:
    • $32^2=1024$
    • $44^2=1936$
    • $27^2=729$
    Folgende Potenzen ergeben $324$, $1369$ und $3969$:
    • $63^2=3969$
    • $37^2=1369$
    • und zusätzlich gäbe es noch: $18^2=324$
    Übrig bleiben dann:
    • $35^2=1225$
    • $99^2=9801$

  • Tipps

    Eine Quadratzahl ist eine Zahl, die die zweite Potenz einer natürlichen Zahl ist. Es gilt allgemein $a^2=a\cdot a$.

    Sieh dir diese Beispiele an:

    • $0^2=0\cdot0=0$
    • $1^2=1\cdot1=1$
    • $2^2=2\cdot2=4$
    Lösung

    Eine wichtige Grundlage für das Quadrieren der zweistelligen Zahlen ist das Quadrieren der einstelligen Zahlen. Das gehört zum Einmaleins und du solltest sie am besten im Schlaf können, es gilt:

    • $9^2=9\cdot9=81$
    • $3^2=3\cdot3=9$
    • $7^2=7\cdot7=49$
    • $8^2=8\cdot8=64$
    • $6^2=6\cdot6=36$
    Die weiteren einstelligen Quadratzahlen sind:
    • $0^2=0\cdot0=0$
    • $1^2=1\cdot1=1$
    • $2^2=2\cdot2=4$
    • $4^2=4\cdot4=16$
    • $5^2=5\cdot5=25$
  • Tipps

    Man könnte statt $11\cdot 12$ auch $11^2 +11$ rechnen, da $11^2 +11= 11\cdot 11+11 =11\cdot 12$.

    Lösung

    Wir können den Trick zum Quadrieren von zweistelligen Zahlen auch nutzen um Multiplikationen von Zahlen, die sich nur um $1$ unterscheiden, zu vereinfachen. Zum Beispiel können wir die Multiplikation von $12\cdot 13$ auf das Quadrieren von $12$ oder $13$ zurückführen und dann noch $13$ addieren oder $12$ subtrahieren. Es gilt nämlich:

    $12\cdot13=12\cdot12+12=12^2+12$

    und auch

    $12\cdot13=13\cdot13-13=13^2-13$

    Dann rechnen wir wie gewohnt für $12^2$:

    1. Die linke Ziffer quadrieren. $\Rightarrow 1$
    2. Dann $2\ \cdot$ linke Ziffer $\cdot$ rechte Ziffer rechnen.$\Rightarrow 4$
    3. Die rechte Ziffer quadrieren. $\Rightarrow 4$
    4. Eventuell entstandene Überträge addieren. $\Rightarrow$ Gibt es hier nicht. Also $12^2=144$ und analog $13^2=169$.
    $12^2+12=144+12=156$

    $13^2-13=169-13=156$

    Wir haben also zwei Möglichkeiten, $12\cdot 13=156$ zu berechnen.

    Ebenso berechnen wir:

    • $22\cdot 21=462$
    Hier kannst du entweder rechnen:

    $22\cdot 21= 21\cdot21+21=21^2+21=441+21=462$

    oder:

    $22\cdot 21= 22\cdot22-22=22^2-22=484-22=462$

    • $54\cdot 55=2970$
    Hier kannst du entweder rechnen:

    $54\cdot 55= 54\cdot54+54=54^2+54=2916+54=2970$

    oder:

    $55\cdot 55= 55\cdot55-55=55^2-55=3025-55=2970$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.224

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden