Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Grundrechenarten – Multiplikation

Weshalb sind Ameisen so effizient? Die Antwort liegt in der Multiplikation, dem wiederholten Addieren. Du erfährst, wie Ameisen und Zahlen zusammenhängen und wie du mit Multiplikation schneller rechnen kannst. Neugierig geworden? Das und noch vieles mehr erwartet dich im folgenden Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Grundrechenarten – Multiplikation

Was ist Multiplikation?

1/5
Bewertung

Ø 4.0 / 261 Bewertungen
Die Autor*innen
Avatar
Team Digital
Grundrechenarten – Multiplikation
lernst du in der 5. Klasse - 6. Klasse

Grundrechenarten – Multiplikation Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Grundrechenarten – Multiplikation kannst du es wiederholen und üben.
  • Tipps

    Das lateinische Wort „commutare“ bedeutet „vertauschen“.

    Die Aufgabe $5 \cdot 3$ ist die Kurzschreibweise von $3 + 3 + 3 + 3 +3$.

    Lösung

    Die Multiplikation ist eine Kurzschreibweise für die wiederholte Addition des gleichen Summanden. Du kannst also, anstatt immer wieder dieselbe Zahl zu addieren, auch ein Produkt schreiben.
    Beispiele:

    • $3 + 3 + 3 + 3 +3 = \mathbf{5} \cdot 3$
    • $15 + 15 + 15 = \mathbf{3} \cdot 15$
    • $7 + 7 + 7 + 7 + 7 + 7 +7 = \mathbf{7} \cdot 7$

    Das Kommutativgesetz bei der Multiplikation besagt, dass du die Reihenfolge der Faktoren beliebig vertauschen kannst. Das Produkt ändert sich dadurch nicht. Das heißt, zwei Multiplikationen mit denselben Faktoren ergeben immer dasselbe Produkt, und zwar unabhängig von der Reihenfolge der Faktoren.
    Beispiele:
    • $3 \cdot 5 \cdot 2 = 5 \cdot 2 \cdot 3 = 2 \cdot 5 \cdot 3 = 30$
    • $4 \cdot 1 \cdot 3 = 3 \cdot 4 \cdot 1 = 1 \cdot 3 \cdot 4 = 12$
    • $5 \cdot 10 = 10 \cdot 5 = 50$

  • Tipps

    Zum Beispiel gilt $0 \cdot 2 = 0$, da wir keinmal die Zahl $2$ haben.

    Die Reihenfolge der Faktoren kannst du in einem Produkt beliebig vertauschen (Kommutativgesetz).

    Lösung

    Eine Multiplikation, bei der einer der Faktoren $0$ ist, ergibt immer $0$. Dabei ist es egal, an welcher Stelle der Faktor $0$ steht und wie groß die anderen Faktoren sind.

    Folgende Aufgaben haben einen Faktor $0$ und somit das Produkt $0$:

    • $235 \cdot 0 \cdot 51 = 0$
    • $0 \cdot 6 = 0$
    • $0 \cdot 51 = 0$

    Folgende Aufgaben haben ein Produkt ungleich $0$:
    • $3 \cdot 5 \cdot 6 = 15 \cdot 6 = 90$
    • $3 \cdot 15 = 45$
    • $3 \cdot 6 \cdot 5 = 18 \cdot 5 = 90$

  • Tipps

    Du kannst die Faktoren bei der Multiplikation vertauschen. Das hilft dir, wenn die Rechnung in einer anderen Reihenfolge leichter ist.

    Wenn $20$ Ameisen mit je zwei Eimern zum Fluss laufen, dann bringen sie insgesamt $20 \cdot 2 = 40$ Eimer Wasser zurück.

    Lösung

    Die Anzahl der Ameisen in der Einheit ergibt sich, wenn wir die acht Ameisen pro Reihe mit der Anzahl der Reihen multiplizieren. Es sind also insgesamt $8 \cdot 5 = 40$ Ameisen in der neuen Spezialeinheit.

    Da jede der Ameisen zwei Wassereimer schleppen kann, ergibt sich die Anzahl der Eimer, wenn wir die Anzahl der Ameisen noch mit $2$ multiplizieren. Insgesamt rechnen wir:

    $5 \cdot 8 \cdot 2 = 40 \cdot 2 = 80$

    Das heißt, mit jedem Weg zum Fluss bringt die Einheit $80$ Eimer Wasser für den Vorrat zurück.

    Wenn die Einheit dreimal zum Fluss marschiert, dann müssen wir zusätzlich noch mit dem Faktor $3$ multiplizieren und kommen so auf:

    $3 \cdot 5 \cdot 8 \cdot 2 = 15 \cdot 8 \cdot 2$

    Hier können wir den zweiten und den dritten Faktor, also die $8$ und die $2$, vertauschen, damit die Rechnung einfacher wird:

    $15 \cdot 2 = 30$

    Daher ergibt sich für $15 \cdot 2 \cdot 8 = 30 \cdot 8 = 240$.
    Die neue Spezialeinheit bringt also insgesamt $240$ Eimer Wasser für den Vorrat zurück.

  • Tipps

    Erinnere dich an das Kommutativgesetz bei der Multiplikation.

    Zwei Produkte sind auch dann gleich, wenn du schon einen Teil berechnet hast. Zum Beispiel ist $3 \cdot 5 \cdot 6 = 15 \cdot 6 = 6 \cdot 15$.

    Lösung

    Wenn dieselben Faktoren multipliziert werden, dann ergibt sich unabhängig von der Reihenfolge dasselbe Produkt. Du kannst also die Reihenfolge der Faktoren beliebig vertauschen oder auch einzelne Faktoren miteinander multiplizieren.

    Wir haben die folgenden Produkte:

    • $\mathbf{2 \cdot 5 \cdot 3} = \mathbf{10 \cdot 3} = 30$
    Hier wurden die ersten beiden Faktoren zusammengefasst.
    • $\mathbf{17 \cdot 9} = \mathbf{9 \cdot 17} = 153$
    Hier wurden die Faktoren vertauscht.
    • $\mathbf{3 \cdot 3 \cdot 5} = 9 \cdot 5 = \mathbf{5 \cdot 9} = 45$
    Hier wurden die ersten beiden Faktoren zusammengefasst und mit dem letzten Faktor vertauscht.
    • $\mathbf{2 \cdot 4 \cdot 7 \cdot 13} = \mathbf{13 \cdot 2 \cdot 4 \cdot 7} = 26 \cdot 4 \cdot 7 = 104 \cdot 7 = 728$
    Hier wurden die Faktoren vertauscht.
    • $\mathbf{7 \cdot 2 \cdot 11 \cdot 3} = 3 \cdot 2 \cdot 11 \cdot 7 = \mathbf{3 \cdot 22 \cdot 7} = 66 \cdot 7 = 462$
    Hier wurden der erste und der letzte Faktor vertauscht und die mittleren Faktoren zusammengefasst.

  • Tipps

    Bei einer Multiplikation heißen die Zahlen, die multipliziert werden, Faktoren.

    Das Ergebnis einer Multiplikation wird als Produkt bezeichnet.

    Lösung

    Bei einer Multiplikation heißen die Zahlen, die miteinander multipliziert werden, Faktoren. Um die einzelnen Faktoren zu unterscheiden, werden sie häufig nummeriert, also als 1. Faktor, 2. Faktor usw. bezeichnet. Das Ergebnis einer Multiplikation nennen wir Produkt.

  • Tipps

    Ein Produkt ist $0$, wenn einer der Faktoren $0$ ist.

    Zwei Produkte mit denselben Faktoren sind gleich, unabhängig von der Reihenfolge der Faktoren.

    Lösung

    Sobald ein Faktor bei einer Multiplikation $0$ ist, ergibt sich das Produkt $0$. Wir können also die folgenden Aufgaben dem Produkt $0$ zuordnen:

    • $6 \cdot 2 \cdot 0$
    • $0 \cdot 12$
    • $2 \cdot 5 \cdot 0 \cdot 6$
    • $3 \cdot 0 \cdot 4$

    Bei den weiteren Aufgaben können wir gemeinsame Faktoren identifizieren:
    • $\mathbf{3 \cdot 2 \cdot 4} = 2 \cdot 4 \cdot 3 = \mathbf{8 \cdot 3} = 24$
    • $\mathbf{3 \cdot 2 \cdot 4} = 2 \cdot 3 \cdot 4 = \mathbf{2 \cdot 12} = 24$

    • $2 \cdot 3 \cdot 2 \cdot 5 = \mathbf{6 \cdot 2 \cdot 5} = 12 \cdot 5 = \mathbf{5 \cdot 12} = 60$
    • $3 \cdot 5 \cdot 2 \cdot 2 = \mathbf{15 \cdot 4} = 60$
    Eine Multiplikation mit $1$ ändert das Ergebnis nicht. Es gilt also:
    • $\mathbf{5 \cdot 12} = \mathbf{5 \cdot 12 \cdot 1} = 60$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden