30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Grundrechenarten – Multiplikation

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

sofatutor kostenlos testen
Bewertung

Ø 3.9 / 12 Bewertungen

Die Autor*innen
Avatar
Team Digital
Grundrechenarten – Multiplikation
lernst du in der 5. Klasse - 6. Klasse

Grundlagen zum Thema Grundrechenarten – Multiplikation

Inhalt

Was ist Multiplikation?

Königin Ameisabeth hat ein großes Bauvorhaben geplant. Aber wie können die kleinen Ameisen immer wieder so gewaltige Vorhaben meistern? Das funktioniert nur, weil die Last auf viele Beine verteilt wird. Aber auf wieviele Beine wird sie verteilt? Um das herauszufinden, schauen wir uns die Multiplikation in Mathematik an.

Wie geht Multiplikation?

Eine Ameise hat sechs Beine. Wieviele Beine haben dann sechs Ameisen? Um das herauszufinden, können wir natürlich Plus rechnen:

$6+6+6+6 = 24$

Vier Ameisen haben zusammen also $24$ Beine. Wir können diese Aufgabe aber auch mit der Multiplikation lösen. Dazu zählen wir zunächst, wie oft die sechs als Summend in der Rechnung vorkommt:

$\underbrace{6+6+6+6}_{\text{4-mal}} = 24$

Die sechs kommt also viermal als Summand in der Addition vor. Die Multiplikation sieht dann folgendermaßen aus:

$4 \cdot 6 = 24$

Daran können wir schon erkennen, was die Multiplikation ist.

  • Die Multiplikation entsteht durch das wiederholte Addieren des gleichen Summanden.

Schauen wir uns ein weiteres Beispiel zur Multiplikation an. Wir betrachten zunächst die Summe:

$4+4+4+4+4 = 20$

Und schreiben es wie im vorigen Beispiel als Multiplikation:

$\underbrace{4+4+4+4+4}_{\text{5-mal}} = 5 \cdot 4 = 20$

Multiplikation – wichtige Grundbegriffe und Regeln

Genau wie in der Addition gibt es auch bei der Multiplikation spezielle Namen für die einzelnen Zahlen. Die Zahlen, die miteinander multipliziert werden, heißen Faktoren. Das Ergebnis der Multiplikation heißt Produkt:

Fachbegriffe der Multiplikation

Die Faktoren der Multiplikation können vertauscht werden, ohne dass sich das Ergebnis ändert. Betrachten wir zum Beispiel unser erstes Beispiel:

$4 \cdot 6 = 24 = 6 \cdot 4$

Das kannst du auch einfach nachrechnen, indem du die beiden Multiplikationen wieder als Summen schreibst:

$4 \cdot 6 = 6 + 6 + 6 + 6 = 24 = 4 + 4+ 4+ 4+ 4+ 4$

Diese Regel gilt auch, wenn mehr als zwei Zahlen miteinander multipliziert werden. Zum Beispiel:

$2 \cdot 4 \cdot 5 = 5 \cdot 4 \cdot 2 = 5 \cdot 2 \cdot 4 = 40$

Wir merken uns also:

  • Die Faktoren der Multiplikation können vertauscht werden, ohne dass sich das Ergebnis ändert.

Wir wollen uns noch eine Besonderheit anschauen. Wir haben schon ausgerechnet, dass vier Ameisen zusammen $24$ Beine haben:

$4 \cdot 6 = 24$

Immer, wenn es eine Ameise weniger wird, sind es natürlich auch sechs Beine weniger:

$3 \cdot 6 = 18$

$ 2 \cdot 6 = 12$

$1 \cdot 6 = 6$

Und was passiert, wenn keine Ameise mehr übrig ist? Es also nur noch null Ameisen sind?

$0 \cdot 6 = 0$

Dann sind es auch null Beine. Und das gilt für alles, das mit null multipliziert wird.

  • Die Multiplikation mit null ergibt immer null.

Multiplikation – Zusammenfassung

Hier findest du die wichtigsten Punkte noch einmal zusammengefasst.

  • Die Multiplikation entsteht durch das wiederholte Addieren des gleichen Summanden.
  • Die Faktoren der Multiplikation können vertauscht werden, ohne dass sich das Ergebnis ändert.
  • Die Multiplikation mit null ergibt immer null.

Ergänzend zum Video findest du auf dieser Seite ein Arbeitsblatt mit Übungsaufgaben zur Multiplikation.

Transkript Grundrechenarten – Multiplikation

Sonnenaufgang! Der Betrieb im Ameisenhügel läuft bereits auf Hochtouren. Ameisenkönigin Ameisabeth die Zweite hat ein großes Bauprojekt in Auftrag gegeben. Da muss jeder mit anpacken! Doch wie schaffen es diese kleinen Geschöpfe immer wieder solch erstaunliche Leistungen zu vollbringen? Nun, da sind auf jeden Fall sehr viele Beinchen im Spiel. Schauen wir uns das mal genauer an, und zwar mit Hilfe der „Multiplikation“. So eine Ameise hat sechs Beine, das ist schonmal nicht schlecht. Wie viele Beine haben dann vier Ameisen zusammengenommen? Das sind sechs plus sechs plus sechs plus sechs Beine. Also insgesamt vierundzwanzig. Das ist allerdings ganz schön umständlich gerechnet. Da wir vier Ameisen mit jeweils sechs Beinen haben, können wir anstatt dessen auch vier mal sechs rechnen. Hierbei sprechen wir von einer Multiplikation. In der Addition kommt die sechs VIER mal als Summand vor. Wir erkennen also, dass die Multiplikation nichts anderes als die wiederholte Addition gleicher Summanden ist. Anstatt umständlich lange Additionsaufgaben aufzuschreiben und zu berechnen, können wir also auch die Kurzschreibweise der Multiplikation verwenden. Die beiden Zahlen die wir miteinander mal nehmen, also multiplizieren, nennen wir Faktoren. Das Ergebnis einer Multiplikation nennen wir Produkt. Diese Fachbegriffe solltest du dir gut merken. Sie werden in der Mathematik sehr häufig verwendet. Um die Arbeit noch effizienter zu gestalten, hat Ameisabeth die Zweite die Ameisenkolonie in Spezialeinheiten unterteilt. Pro Einheit sind das drei mal fünf, also fünfzehn Ameisen. Eine weitere Einheit hat sich anders angeordnet. Hier sind es fünf mal drei Ameisen. Doch egal in welcher Formation die Ameisen antreten, es bleiben fünfzehen Ameisen pro Einheit. Wir erkennen, dass wir bei der Multiplikation die Position der beiden Faktoren vertauschen können, ohne dass sich das Produkt ändert. Diese Regel heißt Kommutativgesetz. Wir können also die Faktoren eines Produktes beliebig vertauschen. Genauso wie wir mehr als nur zwei Zahlen addieren können, können wir auch mehr als zwei Zahlen miteinander multiplizieren. Wie viele Beine stehen Ameisabeth denn pro Spezialeinheit zur Verfügung? Hinter dieser Frage verbirgt sich die Multiplikation drei mal fünf mal sechs. Drei mal fünf sind, wie wir bereits wissen, fünfzehn und fünfzehn mal sechs ergibt neunzig. Auch hier können wir die Faktoren beliebig vertauschen, ohne dass sich das Produkt ändert. Es sind und bleiben neunzig Beine. Die Arbeit schreitet gut voran, doch so langsam breitet sich Müdigkeit aus. In dieser Spezialeinheit machen immer mehr Ameisen ein Mittagsschläfchen. Wie wirkt sich das auf die Anzahl zur Verfügung stehender Ameisenbeine aus? Bei drei Ameisen sind es noch achtzehn Beine, bei zwei nur noch zwölf, eine Ameise hat sechs Beine und sobald sich auch diese verabschiedet hat, sind gar keine – also null – Beine übrig. Wir erkennen eine weitere Besonderheit der Multiplikation: Immer wenn wir eine Zahl mit null multiplizieren, ist das Produkt auch gleich null. Dabei ist es egal wie groß andere Faktoren sind und an welcher Stelle sie stehen. Die Multiplikation zweihundertfünfunddreißig mal null mal einundfünfzig können wir schrittweise berechnen. Doch zweihundertfünfunddreißig mal null ist null und null mal einundfünfzig ist ebenfalls null. Bei einer Multiplikation, in der der Faktor null vorkommt, müssen wir daher gar nicht mehr rechnen. Das Produkt wird immer null sein. So jetzt haben wir aber erstmal genug multipliziert. Bevor wir uns anschauen, was aus dem Bauprojekt der Ameisen geworden ist, fassen wir nochmal kurz zusammen. Bei der Multiplikation haben wir es mit einer Kurzschreibweise für wiederholte Addition zu tun. Die Zahlen die miteinander mal genommen, also multipliziert werden, heißen Faktoren. Das Ergebnis der Multiplikation heißt Produkt. Beim Multiplizieren können wir die Position der Faktoren beliebig vertauschen. Diese Regel nennen wir auch Kommutativgesetz. Wenn wir mit null multiplizieren, ist das Produkt außerdem immer gleich null. Mit Hilfe der Multiplikation können wir auch größere Zahlenbeispiele, wie das Bestimmen der Anzahl von Beinen eines Haufens voller Ameisen, leicht berechnen. Und was verbirgt sich jetzt hinter dem großen Bauprojekt von Ameisabeth der Zweiten? Ein Denkmal für sich selbst. Ah ja, ganz schön selbstverliebt.

2 Kommentare

2 Kommentare
  1. ich fande das vidio eigentlich ganz gut aber der herr hat nicht genug zeit gelassen bzw alles aus zu rechnen sonst war es gut

    Von Mimi, vor 10 Tagen
  2. Also ich habe jetzt wirklich sehr gut gelernt

    Von Amir, vor etwa einem Monat
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

2.230

sofaheld-Level

3.746

vorgefertigte
Vokabeln

10.811

Lernvideos

44.101

Übungen

38.759

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden