sofatutor 30 Tage
kostenlos ausprobieren

Videos & Übungen für alle Fächer & Klassenstufen

Kommutativgesetz und Vertauschungsgesetz 04:28 min

Textversion des Videos

Transkript Kommutativgesetz und Vertauschungsgesetz

Der architekturbegeisterte Alwin fährt mal wieder durch die Stadt, um sich verschiedene Häuser anzuschauen. Dabei fällt ihm etwas auf: Manche der Häuser haben eine unterschiedliche Anordnung, aber trotzdem die gleiche Anzahl an Fenstern. Das hat etwas mit dem Kommutativgesetz zu tun. Dieses wird auch oft Vertauschungsgesetz genannt. Das will Alwin sich noch einmal genauer anschauen. Das türkise Haus hat 3+2 Fenster, also insgesamt 5 Fenster. Das blaue Haus hat 2 plus 3 Fenster insgesamt sind das ebenfalls 5 Fenster. 3+2 ist also das gleiche wie 2+3. Eine unterschiedliche Anordnung der gleichen Anzahl an Fenstern führt zu einer gleichen Gesamtzahl von Fenstern. Und genau das besagt das Kommutativgesetz: Man darf Summanden beliebig vertauschen. Dies geht auch, wenn mehr als 2 Summanden vorhanden sind. Betrachten wir einmal diese beiden Häuser. Das lila Haus hat 1+ 4+3 Fenster. Das orange Haus hat 4+ 1+3 Häuser. Insgesamt besitzen die Häuser jeweils also 8 Fenster. Wir können die Summanden tauschen, wie wir wollen: das Ergebnis bleibt immer gleich. Für die Multiplikation gilt das Kommutativgesetz übrigens auch. Schauen wir uns dazu einmal diese beiden Häuser an. Das rote Haus hat 3 Etagen mit jeweils 2 Fenstern also 3 mal 2 Fenster. Das grüne Haus hat 2 Etagen mit jeweils 3 Fenstern, also 2 mal 3 Fenster. Insgesamt haben beide Häuser also jeweils 6 Fenster. Man kann bei der Multiplikation die Faktoren vertauschen. Das funktioniert wie bei der Addition. Dies geht auch, wenn es mehr als 2 Faktoren sind. So ist 2 mal 3 mal 4 das Gleiche wie 3 mal 4 mal 2 oder auch 4 mal 2 mal 3. Bei allen Rechnungen erhält man als Ergebnis 24. Für die SUBTRAKTION gilt das Kommutativgesetz aber nicht. 6 - 3 ist 3 und 3 - 6 ist -3. Ebenso gilt es nicht für die DIVISION. Rechnen wir zum Beispiel 6 geteilt durch 3, so erhalten wir 2. Teilen wir aber 3 durch 6, erhalten wir 0,5.Fassen wir das noch einmal zusammen. Das Kommutativgesetz besagt, dass man bei der Addition Summanden und bei der Multiplikation Faktoren vertauschen darf. 3+2 ist also das gleiche wie 2+3. Bei beiden Rechnungen ergibt sich das Ergebnis 5. Ebenso ist 3 mal 2 das gleiche wie 2 mal 3, denn beides ergibt 6. Und Alwin? Da hat er sich wohl zu sehr auf die Häuser konzentriert.

1 Kommentar
  1. Gut

    Von Scott Lee, vor etwa einem Monat

Kommutativgesetz und Vertauschungsgesetz Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kommutativgesetz und Vertauschungsgesetz kannst du es wiederholen und üben.

  • Vervollständige den Text zum Kommutativgesetz.

    Tipps

    Die Zahlen, die man multipliziert, heißen Faktoren.

    Die Zahlen, die man addiert, heißen Summanden.

    Betrachte diese beiden Additionsaufgaben:

    $1+5=6$ und $5+1=6$.

    Betrachte diese beiden Subtraktionsaufgaben:

    $12-4=8$ aber $4-12=-8$.

    Lösung

    Das Kommutativgesetz oder auch Vertauschungsgesetz besagt, dass man in manchen Rechenarten die Reihenfolge der Zahlen vertauschen darf. Das gilt zum Beispiel für die Addition und die Multiplikation:

    $1+5=6=5+1$

    $3\cdot 4 =12 =4\cdot 3$

    Für die Subtraktion und Division gilt das Kommutativgesetz jedoch nicht:

    $9-4=5\quad\neq\quad4-9={-5}$

    $12:6=2\quad\neq\quad6:12=\frac{1}{2}$

  • Ergänze die Gleichungen so, dass das Kommutativgesetz richtig angewendet wird.

    Tipps

    Das Kommutativgesetz wird auch Vertauschungsgesetz genannt.

    $11+7=18$

    Vergleiche diese Rechnung mit dem Ergebnis von $7+11$.

    $15 \cdot 4 \cdot 6 = 360 = 6 \cdot 4 \cdot 15$

    Lösung

    Bei der Addition können Summanden und bei der Multiplikation Faktoren beliebig vertauscht werden.

    Beispiele:

    $3+4=4+3$
    $2\cdot3=3\cdot2$

    Das Kommutativgesetz gilt auch bei mehr als zwei Summanden bei der Addition und mehr als zwei Faktoren bei der Multiplikation. Die Anordnung der Summanden bzw. Faktoren ist dabei beliebig.

    Beispiele:

    $3+8+4=8+4+3$
    $2\cdot3\cdot9=3\cdot9\cdot2$

  • Bilde Paare von Termen mit gleichem Ergebnis.

    Tipps

    Beachte, dass das Kommutativgesetz nicht für die Subtraktion und Division gilt.

    Die Anzahl der Fenster sind bei dem lila und bei dem orangen Haus gleich.

    Lösung

    Das Kommutativgesetz gilt für Addition und Multiplikation:

    $4+19+11=34=11+19+4$

    $4\cdot 19 =76 =19 \cdot 4$

    $2\cdot 14\cdot 5=140 = 5\cdot 2\cdot 14$

    Das Kommutativgesetz gilt nicht für die Subtraktion und Division.
    Das bedeutet, dass man bei den Termen $15-9$ und $19:4$ die Reihenfolge der Zahlen nicht einfach vertauschen darf.

  • Wende das Kommutativgesetz an.

    Tipps

    Rechne die Terme einfach aus, um diejenigen mit gleichem Ergebnis zu bestimmen.

    Beachte: Punktrechnung vor Strichrechnung. In Termen wird also erst multipliziert, dann addiert.

    $1\cdot2+3=3+2\cdot1\neq3\cdot1+2$

    Lösung

    Das Kommutativgesetz gilt auch, wenn sowohl Addition als auch Multiplikation zusammen in einem Term angewendet werden.
    Manchmal muss man die Multiplikationen auch ausführen, um die Terme mit gleichem Ergebnis zu erkennen.
    Dabei ist jedoch zu beachten, dass Punkt- vor Strichrechnung gilt, Multiplikationen also vor Additionen ausgerechnet werden.

    Damit gilt:

    $4 \cdot 13 \cdot 1 +3=4 \cdot 13 +3=52+3=55$

    Der zweite Term entspricht schon diesem hier: $4\cdot13+3$

    Der dritte Term kann umgeformt werden zu: $3+ 52$

    Und dieser Term kann dann umgeformt werden zu: $3+13\cdot4$

    Damit ergibt sich: $4 \cdot 13 \cdot 1+3=4\cdot13+3=3+13\cdot4=3+ 52 =55$

    Die anderen Zuordnungen gelingen analog.

  • Bestimme, in welcher der folgenden Situationen die Reihenfolge der Handlung nicht wichtig ist.

    Tipps

    Beim Lesen eines Buches ist die Reihenfolge wichtig: Um die Geschichte eines Buches zu verstehen, muss man die Seiten, die Sätze und Wörter in der richtigen Reihenfolge lesen.

    Wenn du Wäsche zum Trocknen aufhängst, ist es manchmal ganz schön, dabei eine Reihenfolge einzuhalten: Gleiche Socken hängt man am besten nebeneinander auf.

    Aber auch wenn du die Wäsche ganz ungeordnet aufhängst: Trocken wird sie trotzdem.

    Häufig steht in Rezepten, dass man erst die Zwiebeln andünsten soll, bevor man andere Zutaten in die Pfanne tut.

    Lösung

    Das Kommutativgesetz oder auch Vertauschungsgesetz besagt, dass man in manchen Rechenarten die Reihenfolge der Zahlen vertauschen darf. Das gilt zum Beispiel für die Addition und die Multiplikation:

    $1+5=6=5+1$

    $3\cdot 4 =12 =4\cdot 3$

    Es ist auch auf verschiedene Alltagssituationen übertragbar.

    Es spielt keine Rolle, in welcher Reihenfolge man Birnen in den Einkaufswagen legt - erst zwei und dann drei Birnen oder erst drei und dann zwei Birnen. Am Ende hat man trotzdem insgesamt fünf Birnen im Einkaufswagen.

    Auch wenn du Wäsche zum Trocknen aufhängst, ist es egal, welche Wäschestücke nebeneinander hängen: Trocken wird die Wäsche immer.

    Für manche Rechenarten wie Subtraktion und Division gilt das Kommutativgesetz jedoch nicht:

    $9-4=5\quad\neq\quad4-9={-5}$

    $12:6=2\quad\neq\quad6:12=\frac{1}{2}$

    Genauso gibt es auch Alltagssituationen, in denen man die Reihenfolge der einzelnen Handlungsschritte genau beachten muss:

    Das gilt bspw. beim Kochen, beim Lesen und Schreiben und beim Aufbau von Möbeln.

  • Ergänze die Gleichung so, dass sich das Ergebnis nicht verändert.

    Tipps

    Eine Subtraktion kannst du auch als Addition negativer Zahlen darstellen.

    Für die Addition gilt das Kommutativgesetz.

    Manchmal musst du negative Zahlen, manchmal aber auch nur Vorzeichen oder Rechenzeichen eintragen.

    Lösung

    Das Kommutativgesetz gilt, wie wir bereits wissen, nicht für die Subtraktion.

    Aber man kann die Subtraktion als Addition mit negativen Zahlen darstellen.

    In diesem Fall kannst du das Kommutativgesetz wie gewohnt anwenden:

    $5-6= 5+(-6) =-6+5$

    Auch wenn mehrere Subtraktionen vorkommen, kannst du jede davon in eine Addition negativer Zahlen umwandeln und die Reihenfolge beliebig vertauschen:

    $-35+5-13=-35+5+(-13)= 5+(-13)+(-35)=-13+5+(-35)$