30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Punktprobe - vier Punkte in einer Ebene - Aufgabe 1 07:14 min

Textversion des Videos

Transkript Punktprobe - vier Punkte in einer Ebene - Aufgabe 1

Hallo. Wenn Du weißt, was Ebenen sind und auch weißt, was die lineare Unabhängigkeit von Vektoren bedeutet, dann können wir uns jetzt mal ansehen, wie wir herausfinden können, ob vier gegebene Punkte in einer Ebene liegen. Dabei soll es nur in diesem Video darum gehen, wie man das rechnet. Es kommen also keine Veranschaulichungen und keine Erklärungen vor. Wir haben vier Punkte A, B, C und D gegeben und wir wissen, dass vier Punkte genau dann in einer Ebene liegen, wenn die Vektoren AB, AC und AD linear abhängig sind. Hier sind auch noch andere Kombinationen dieser vier Punkte denkbar, aber das soll hier nicht weiter Thema sein. Ja, wir werden also diese Vektoren bilden und diese dann auf lineare Abhängigkeit überprüfen. Dazu brauchen wir zunächst einmal diese Vektoren. Wir erhalten den AB, indem wir rechnen Ortsvektor zu B, also 0B - 0A, also minus Ortsvektor zu A. Das ist gleich (2, 3, 3) - (1, -1, 1) und das Ergebnis ist (1, 4, 2). Dann bilden wir AC: Das ist der Ortsvektor zu C, also 0C - 0A. Hätte ich jetzt mehr Platz gelassen, hätte ich jetzt noch in der Zeile weiterschreiben können. Das ist gleich (-2, -3, 1) - (1, -1, 1) = (-3, -2, 0). Dann bilden wir den Vektor AD, das ist also Ortsvektor zu D, dieser ist (1, 1, 2) - (1, -1, 1). Ja, diesen Zwischenschritt habe ich jetzt weggelassen. Und das Ergebnis ist AD = (0, 2, 1). Es sind nun diese drei Vektoren linear abhängig, wenn sich einer dieser Vektoren als Linearkombination dieser beiden anderen darstellen lässt. Das heißt also zum Beispiel, wenn wir schreiben können AB = r×AC + s×AD und r und s sind dabei irgendwelche reelle Zahlen. Wir können das hier auch für unseren konkreten Fall aufschreiben. Dann haben wir: AB = (1, 4, 2)=r×(-3 -2 0) + s×(0, 2, 1). Als Gleichungssystem sieht das folgendermaßen aus: Wir haben 1 = -3r, 4 = -2×r + 2s und 2 ist gleich, naja, r×0 muss ich nicht aufschreiben, 1×s auch nicht, da schreib ich einfach s hin. 2 = s. Und da ist das Gleichungssystem fertig. Wir können also jetzt direkt ablesen, dass s = 2 ist und dass r=-1/3 ist. Und so können wir diese beiden Zahlen direkt in die zweite Gleichung einsetzen. Und wir erhalten dann 4 = -2×(-1/3) + 2×2. Naja, und das sehen wir sofort, dass das nicht stimmt. Hier das Zeichen für den Widerspruch. Da es diese Zahlen r und s nicht gibt, so dass AB als Linearkombination von AC und AD dargestellt werden kann, sind diese drei Vektoren auch nicht linear abhängig. Das heißt nun wiederum, dass sie linear unabhängig sind. Und das heißt dann, dass diese vier Punkte nicht in einer Ebene liegen. So, damit sind wir fertig. Wir haben also gesehen, wie wir feststellen können, ob gegebene vier Punkte A, B, C, D in einer Ebene liegen. Wir haben dafür die Differenzvektoren AB, AC und AD gebildet, denn die Punkte liegen genau dann in einer Ebene, wenn diese Differenzvektoren linear abhängig sind. In unserem Fall waren sie linear unabhängig. Und deshalb liegen also diese vier Punkte nicht in einer Ebene. Viel Spaß damit, Tschüss.