30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Was sind Funktionen? – Überblick

Bewertung

Ø 3.7 / 81 Bewertungen

Die Autor/-innen
Avatar
Team Digital

Was sind Funktionen? – Überblick

lernst du in der 7. Klasse - 8. Klasse

Beschreibung Was sind Funktionen? – Überblick

Nach dem Schauen dieses Videos wirst du in der Lage sein, einige Eigenschaften von Funktionen auszuarbeiten.

Zunächst lernst du, dass du dir Funktionen als Abbildungen oder Relationen vorstellen kannst. Anschließend betrachtest du die Eigenschaften von Funktion bezüglich ihrer Definitions- und Wertemenge. Abschließend lernst du, wie du ausgehend von einer Funktions- oder Abbildungsvorschrift eine Wertetabelle erstellen und den zugehörigen Funktionsgraphen zeichnen kannst.

Lerne etwas über Funktionen, damit du die Naturwissenschaften spielend leicht in den Griff bekommst.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Funktion, Abbildung, Relation, Funktionsvorschrift, Abbildungsvorschrift, Definitionsmenge, Wertemenge, Funktionsgraph, Wertetabelle, Funktionswert und Koordinatensystem.

Bevor du dieses Video schaust, solltest du bereits wissen, was Zuordnungen und Mengen sind.

Nach diesem Video wirst du darauf vorbereitet sein, dein Wissen zu Funktionen zu vertiefen.

Transkript Was sind Funktionen? – Überblick

Mit Funktionen bekommst du die Naturwissenschaften spielend leicht in den Griff oder du kannst wirtschaftliche Zusammenhänge beschreiben und auch in der Mathematik selbst spannende Dinge entdecken. Aber — was sind Funktionen überhaupt? Du kannst dir Funktionen auf zwei verschiedene Arten vorstellen. Als Abbildungen oder als eindeutige Relationen. Stell dir vor, du machst ein Photo. Dann wird jeder Punkt deines Motivs auf einen Punkt auf dem Photo abgebildet. Abstrakt kannst du dir vorstellen, dass ein Element aus einer Ausgangsmenge auf ein Element aus einer Zielmenge abgebildet wird. Oder stell dir vor, du kaufst Schuhe ein. Dann gehört zu jedem Paar Schuhe ein Preis. Das ist eine Relation! Abstrakt nennt man es eine Relation, wenn man aus einer Ausgangsmenge und einer Zielmenge Paare zusammenstellt. Die Ausgangsmenge nennt man bei Funktionen üblicherweise Definitionsmenge, kurz D. Und die Zielmenge WERTEMENGE, oder auch Bildmenge, W. Du kannst es dir so merken: eine Funktion ist wie eine Maschine. Die Definitionsmenge bestimmt die möglichen Inputs, die Wertemenge die möglichen Outputs. In den allermeisten Fällen der Schulmathematik sind diese Mengen beide Teilmengen der reellen Zahlen. Um zu beschreiben, was eine Funktion denn genau tut, benutzen wir folgende Schreibweisen: Für die Variable, also für die Zahl aus der Definitionsmenge, benutzt man oft ein x. Man nennt sie auch oft Veränderliche. Und die Funktion selbst bezeichnet man meistens mit f. Für jedes x gibt es das passende Element aus der Wertemenge — und das nennt man f von x. Eine Art, die Funktion zu beschreiben ist es, wenn man einfach die Funktionsgleichung angibt — zum Beispiel so: Man liest das als "f von x ist gleich 2 mal x hoch 3 plus 5". Diese Schreibweise hat den Vorteil, dass man direkt damit rechnen kann. Manchmal gibt man Funktionen aber auch als Abbildungsvorschrift an. Die schreibt man bei unserer Funktion als "f: x wird abgebildet auf 2 x hoch 3 plus 5". Sie bedeutet genau das gleiche, macht aber etwas deutlicher, was die Variable ist. In beiden Fällen sollte man die Definitions- und Wertemenge noch zusätzlich angeben, zum Beispiel so: Wenn die unmissverständlich klar sind, lässt man sie manchmal weg — schreib sie aber lieber immer dazu! Es gibt auch die einfache Schreibweise mit y gleich 2 mal x hoch 3 plus 5. Die wirst du aber immer weniger benutzen, je komplizierter die Funktionen werden. Um zu verstehen, was eine Funktion genau tut, gibt man oft eine Wertetabelle an. In die trägt man ausgesuchte Werte für die Variable und die zugehörigen Funktionswerte ein. Oft interessiert man sich für den Wert der Funktion bei x gleich 0. Welche übrigen Werte der Variablen man betrachtet, hängt stark von der Funktion ab, wir setzen einfach ein paar ein. Um sich vorzustellen zu können, wie die Funktion aussieht, kann man ihren Graphen zeichnen. Dazu brauchen wir ein Koordinatensystem - eine Achse für die Definitionsmenge und senkrecht dazu eine Achse für die Wertemenge. Man nennt die Achsen meistens x-Achse und y-Achse, aber die y-Achse sollte eigentlich "f von x - Achse" heißen. Der Schnittpunkt der beiden Achsen ist der Ursprung des Koordinatensystems. Um den Graphen der Funktion zu zeichnen, machst du für jeden x-Wert einen Punkt beim passenden Funktionswert. Anschließend verbindest du die Punkte. Aber wie genau? Wenn du nicht vorher schon weißt, wie der Graph der Funktion ungefähr aussehen muss, bleibt dir nur eine Wahl: Du musst mehr Punkte eintragen. Wenn du den Graphen aber gezeichnet hast, kannst du einige Eigenschaften der Funktion aus ihm ablesen: Zum Beispiel könnte der Graph punktysemmtrisch zum Ursprung sein. Die Graphen mancher anderer Funktionen sind achsensymmetrisch zur y-Achse oder nichts von beidem. Du findest Schnittpunkte des Graphen mit den Koordinatenachsen Hoch- oder Tiefpunkte oder auch die Fläche, die der Graph mit der x-Achse einschließt. Also merk dir: Funktionen kannst du dir immer als Abbildungen oder Relationen vorstellen. Die grundlegenden Eigenschaften einer Funktion sind ihre Definitionsmenge und ihre Wertemenge. Um anzugeben, was die Funktion tut, kannst du folgende Schreibweisen benutzen: Die Funktionsgleichung oder die Abbildungsvorschrift. Du kannst ihre Wertetabelle angeben und ihren Graphen zeichnen. Funktioniert doch, oder?

8 Kommentare

8 Kommentare
  1. 2*x +2 ah jaaaaa

    Von Claudia Neher, vor 2 Monaten
  2. Hallo Tamara B,

    Schau dir doch mal dieses Video an: https://www.sofatutor.com/mathematik/videos/funktionen-und-relationen?launchpad=video
    Gerne kannst du dich auch an den Fach-Chat wenden, der von Montag bis Freitag zwischen 17-19 Uhr für dich da ist.
    Ich hoffe, dass wir dir weiterhelfen können.
    Liebe Grüße aus der Redaktion

    Von Adina Schulz, vor 6 Monaten
  3. Ich weiß immer noch nicht was eine Definitionsmenge ist😳🤷🏼

    Von Tamara B., vor 6 Monaten
  4. lul

    Von Hoodie Xd, vor 7 Monaten
  5. Hallo Afra Zeynep, in Funktionen kannst du prinzipiell erstmal alle Zahlen einsetzen. Wenn das nicht erlaubt ist, müsste das bei der Angabe des Definitionbereichs genannt werden. Manchmal führen bestimmte Zahlen aber auch zu nicht sinnvollen Ausdrücken. Darauf musst du achtgeben. Liebe Grüße aus der Redaktion.

    Von Albrecht Kröner, vor etwa einem Jahr
Mehr Kommentare

Was sind Funktionen? – Überblick Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Was sind Funktionen? – Überblick kannst du es wiederholen und üben.
  • Gib Eigenschaften von Funktionen und ihren Graphen wieder.

    Tipps

    Eine Funktionsgleichung beschreibt, welcher $f(x)$-Wert zum dazugehörigen $x$-Wert gehört.

    Die Ausgangsmenge definiert, welchen Werten ein dazugehöriger Wert zugeordnet werden soll.

    Lösung

    Funktionen kannst du dir als Abbildungen und als eindeutige Relationen vorstellen. Die Ausgangsmenge einer Funktion nennt man Definitionsmenge $\mathbb{D}$. Die Zielmenge wird Wertemenge $\mathbb{W}$ genannt. Funktionen kann man sowohl mit einer Funktionsgleichung $f(x)=2x^3+5$ als auch mit einer Abbildungsvorschrift $f:x\rightarrow2x^3+5$ beschreiben. Um besser zu verstehen, was eine Funktion tut, benutzt man eine Wertetabelle und einen Graphen.

  • Benenne die Teile des Graphen und Koordinatensystems.

    Tipps

    Die $x$-Achse verläuft horizontal und die $f(x)$-Achse vertikal.

    Im Ursprung kreuzen sich die beiden Achsen.

    Lösung

    Hier kannst du sehen, wie die Teile des Graphen und des Koordinatensystems heißen:

    Dabei ist der $y$-Achsenschnittpunkt nicht eigens bezeichnet.

  • Ermittle die Wertepaare der angegebenen Punkte im Koordinatensystem

    Tipps

    So sieht die allgemeine Schreibweise eines Wertepaars aus:

    $(x\vert f(x))$.

    Nehmen wir den Punkt $(1|2)$ :

    Hier ist $x=1$ und $f(x)=2$.
    Wir gehen also $1$ Schritt entlang der $x$-Achse nach rechts und von dort aus $2$ Schritte entlang der $f(x)$-Achse nach oben. Dort befindet sich der Punkt $(1|2)$.

    Lösung

    Die Koordinaten $x$ und $f(x)$ eines Graphen gibst du in Form eines Wertepaares $(x\vert f(x))$ an. Nehmen wir zum Beispiel den $x$-Wert $-4$: Man wandert auf der $x$-Achse bis zu $x=-4$. Dann wandert man nach oben bis zu dem Punkt, an dem der Graph $x=-4$ schneidet. In diesem Fall ist das $f(x)=2$. Hier liegt also der Punkt $(-4\vert2)$.

    Demnach muss Thore die gegebenen Wertepaare wie abgebildet an dem Graphen anbringen.

  • Ermittle die fehlenden Werte.

    Tipps

    Starte im Ursprung. Gehe entlang der $x$-Achse für positive $x$-Werte nach rechts und für negative $x$-Werte nach links. Von da aus gehst du für positive $f(x)$-Werte nach oben und für negative $f(x)$-Werte nach unten.

    Sieh dir als Beispiel den Punkt $(2;\, 4)$ auf diesem Funktionsgraphen an.

    Lösung

    In einer Wertetabelle können exemplarisch einige Punkte $(x; \, f(x))$ eines Funktionsgraphens eingetragen werden. Dafür wählen wir einen Wert $x$ auf der $x$-Achse und gehen von dort aus gerade nach oben oder nach unten, bis wir auf den Funktionsgraphen treffen. Der Wert, den wir auf dieser Höhe auf der $f(x)$-Achse ablesen, ist der zugehörige $f(x)$-Wert.

    Nach diesem Muster lassen sich für den Funktionsgraphen in der Aufgabenstellung folgende $f(x)$-Werte in die Wertetabelle eintragen:
    $\begin{array}{c|c} x &f(x) \\ \hline -3 &-3 \\ -2 &8 \\ -1 &7 \\ 0 &0 \\ 1 &-7 \\ 2 &-8 \\ 3 &3 \end{array}$

    Dies sind außerdem die auf ganze Zahlen gerundeten $x$-Achsenschnittpunkte*:
    $(-3;\, 0) \quad (0;\, 0) \quad (3;\, 0)$

    Noch ein Beispiel:** Anhand des abgebildeten Funktionsgraphen zeigen wir dir noch einmal exemplarisch, wie du einen Punkt eines Graphen bestimmen kannst:

    Wenn du zu einem Funktionsgraphen einen Punkt $(x; \,f(x))$ angeben möchtest, brauchst du zum $x$-Wert den passenden $f(x)$-Wert. Sagen wir, du hast den Wert $x=2$ und du kennst den zugehörigen Wert $f(x)=4$. Dann kannst du sagen, dass der Punkt $(2;\,4)$ auf deinem Graphen liegt.

    Aber wie bestimmst du den $f(x)$-Wert zu $x=2$? Ausgehend vom Koordinatenursprung gehst du entlang der $x$-Achse $+2$ Schritte, also $2$ Schritte nach rechts. Von dort musst du schauen, ob du hoch- oder heruntergehen musst, um auf den Funktionsgraphen zu treffen. In diesem Beispiel musst du $4$ Schritte nach oben gehen. Du gehst also $+4$ Schritte entlang der $f(x)$-Achse. Auf dieser Höhe kannst du auch $+4$ auf der $f(x)$-Achse ablesen. Mit $x=2$ und $f(x)=4$ bestimmst du so den Punkt $(2;\,4)$.

    In einem $x$-Achsenschnittpunkt trifft der Funktionsgraph auf die $x$-Achse. Wir sagen dazu: Die $x$-Achse und der Funktionsgraph schneiden sich. Du gehst von der $x$-Achse aus keinen Schritt, also $0$ Schritte, nach oben oder unten, um auf den Funktionsgraphen zu treffen. Aus diesem Grund gilt für die $x$-Achsenschnittpunkte immer $f(x)=0$. Den $x$-Wert kannst du auf der $x$-Achse ablesen. In unserem dargestellten Beispiel ist der einzige $x$-Achsenschnittpunkt der Punkt $(0; \,0)$.

  • Bestimme, welche Merkmale die gegebenen Graphen besitzen.

    Tipps

    Erinnere dich: Ursprung nennen wir den Punkt, an dem die beiden Achsen sich schneiden.

    Negative $f(x)$-Werte findet man unterhalb der $x$-Achse.

    So sieht ein Graph aus, der punktsymmetrisch ist.

    Es gibt eine Eigenschaft in der Liste, die weder auf Graph 1 noch auf Graph 2 zutrifft.

    Lösung

    Diese Eigenschaften gehören zu Graph $1$:

    • achsensymmetrisch zur $f(x)$-Achse
    • berührt den Ursprung
    • $f(x) \geq 0$
    • schneidet die $x$-Achse $1$ Mal
    • ein Tiefpunkt liegt bei $(0\vert0)$
    Und diese Eigenschaften gehören zu Graph $2$:
    • schneidet die $x$-Achse $3$ Mal
    • besitzt auch negative $f(x)$-Werte
    • ein Hochpunkt liegt im Bereich $x<0$
    • ist punktsymmetrisch zum Punkt $P$
    Zudem ist keiner der beiden Graphen punktsymmetrisch zum Koordinatenursprung.

  • Untersuche, welche Wertetabelle zu welchem Graphen gehört.

    Tipps

    Manche Wertetabellen haben einige gleiche Wertepaare. Benutze hier die übrigen Wertepaare der Tabellen, um herauszufinden, welcher Graph zu dieser Tabelle passt.

    Zwei Graphen verlaufen durch den Ursprung $(0\vert 0)$. Einer dieser Graphen besitzt keine negativen Funktionswerte.

    Lösung

    Hier siehst du noch einmal, wie du ein Wertepaar im Koordinatensystem findest.

    $(2|-6)$ bedeutet $x=2$ und $f(x)=-6$.
    Ausgehend vom Koordinatenursprung gehen wir entlang der $x$-Achse $2$ Schritte nach rechts. Von dort aus müssen wir $-6$ Schritte entlang der $f(x)$-Achse gehen. Wir gehen also $6$ Schritte entlang der $f(x)$-Achse nach unten. Dort befindet sich der Punkt $(2|-6)$

    Demnach können wir den Graphen jeweils folgende Wertetabellen zuordnen:

    Graph $1$:

    $\begin{array}{c|c} x &y \\ \hline -1 &1 \\ 0 &0 \\ 1 &1 \\ 2 &4 \end{array}$

    Graph $2$:

    $\begin{array}{c|c} x &y \\ \hline -1 &4 \\ 0 &0 \\ 1 &-4 \\ 2 &-2 \end{array}$

    Graph $3$:

    $\begin{array}{c|c} x &y \\ \hline -1 &-4 \\ 0 &-2 \\ 1 &0 \\ 2 &2 \end{array}$

    Graph $4$:

    $\begin{array}{c|c} x &y \\ \hline -1 &3 \\ 0 &2 \\ 1 &1 \\ 2 &-6 \end{array}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
Im Vollzugang erhältst du:

10.843

Lernvideos

44.288

Übungen

38.909

Arbeitsblätter

24h

Hilfe von Lehrer/
-innen

running yeti

In allen Fächern und Klassenstufen.

Von Expert/-innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden