30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Brüche als Exponenten 08:46 min

Textversion des Videos

Transkript Brüche als Exponenten

Hallo, schön, dass du mal wieder da bist! Heute werde ich dir erklären, wie du eine Potenz, deren Exponent ein beliebiger Bruch ist, in eine Wurzel umwandeln kannst und andersherum.

Wenn der Exponent ein Stammbruch ist und deshalb im Zähler die 1 steht gilt folgende Regel: n-te Wurzel von a ist gleich a hoch 1/n. Die zehnte Wurzel aus 1024 ist deshalb beispielsweise 1024 hoch 1/10. Andersherum ist 342 hoch ⅓ dasselbe wie die dritte Wurzel von 342.

Wenn du das bereits weißt, dann wollen wir daran ansetzen und weiterarbeiten.

Beispielaufgaben: Brüche als Exponenten & Potenzgesetze

Gegeben ist der Wurzelterm, die Quadratwurzel von 4 hoch 3. Bei diesem Term besitzt der Radikand - also der Term unter der Wurzel - eine Potenz. Wie sollst du damit umgehen, wenn du nun als Aufgabe erhältst den Term als Potenz zu schreiben?

Lösen wir doch dazu den Beispielterm Schritt für Schritt gemeinsam. Als erstes formen wir die Wurzel zur Potenz um. Da es sich um eine Quadratwurzel handelt, gilt: Die Quadratwurzel von 4 hoch 3 ist 4 hoch 3 in Klammern hoch ½.

An dieser Stelle helfen dir die Potenzgesetze weiter. Potenzen werden potenziert, indem man die Exponenten multipliziert. Das heißt wir rechnen 4 hoch 3 in Klammern hoch ½ ist gleich 4 hoch in Klammern 3 mal ½ und das ergibt schließlich 4 hoch 3/2.

Schauen wir uns noch ein zweites Beispiel an. Dieses Mal ist es deine Aufgabe, den Potenzterm 27 hoch ⅖ in einen Wurzelterm umzuformen. Dazu benötigen wir allerdings einen Stammbruch im Exponenten.

Wir betrachten also zunächst den Exponenten ⅖. Wir schreiben ihn als Produkt 2 mal ⅕. Dann erhalten wir 27 hoch ⅖ ist gleich 27 hoch in Klammern 2 mal ⅕. Wegen der Potenzgesetze können wir das dann folgendermaßen umformen. 27 hoch in Klammern 2 mal ⅕ ist gleich 27 hoch 2 in Klammern hoch ⅕ und das können wir umformen in die fünfte Wurzel aus 27 hoch 2. Fertig! Damit haben wir 27 hoch ⅖ in den Wurzelterm, die fünfte Wurzel von 27 hoch 2, umgeformt.

Nun haben wir zwei Beispiele gemeinsam berechnet und dabei gelernt, wie Potenzen mit beliebigen Brüche im Exponenten als Wurzel dargestellt werden. Betrachten wir die beiden Beispiele doch noch einmal genauer.

Wenn du jetzt die beiden Termumformungen vergleichst, erkennst du vielleicht Ähnlichkeiten. Fällt dir vielleicht etwas auf? Was passieren mit Zähler und Nenner des Bruches im Exponenten? Genau, der Zähler ist der Exponent des Radikanden - also der Wert, der unter der Wurzel steht - und der Nenner des Bruches im Exponenten gibt an, die wie vielte Wurzel man ziehen muss. Das ist also die Zahl, die über der Wurzel steht. Man nennt sie den “Wurzelexponenten”.

Allgemein und formal heißt die Regel so: a hoch m/n ist gleich der n-ten-Wurzel aus a hoch m. Die Variable n darf allerdings nicht den Wert 0 haben, da die Division durch 0 nicht erlaubt ist.

Zum Schluss zeige ich dir jetzt noch zwei Beispiele, bei denen du diese Regel anwenden kannst.

Das erste Beispiel ist der Wurzelterm, die vierte Wurzel von 16 hoch 2, und das zweite Beispiel der Wurzelterm, die Quadratwurzel aus der Quadratwurzel des Produktes von x hoch 8 mal y hoch 4. Beide Terme sollst du so weit wie möglich vereinfachen.

Beginnen wir mit dem ersten Beispiel, die vierte Wurzel von 16 hoch 2. Überleg selbst einmal, wie du vorgehen würdest, um den Term zu vereinfachen. Richtig! Als erstes formen wir die Wurzel in eine Potenz um. Wir erhalten 16 hoch 2 in Klammern hoch ¼. Wegen den Potenzgesetzen ist das gleich 16 hoch in Klammern 2 mal ¼. Das ergibt 16 hoch 2/4.

Den Bruch im Exponenten kann man kürzen. Siehst du das. 2/4 sind auch ½. Also erhalten wir 16 hoch ½. Wenn wir das wieder in einen Bruch umwandeln, ist das die Quadratwurzel aus 16. Was das ist, können wir nun im Kopf berechnen - vier ist unser Ergebnis. Super! Damit haben wir keine technischen Hilfsmittel gebraucht, um den Term zu lösen. Und das obwohl er so kompliziert aussah!

Betrachten wir nun das zweite Beispiel, die Quadratwurzel aus der Quadratwurzel des Produktes von x hoch 8 mal y hoch 4. Hier haben wir nun zwei Variablen im Radikanden. Das soll dich aber nicht stören. Überleg auch hier, wie du zunächst vorgehen würdest.

Sehr gut! Als erstes formen wir wieder die Wurzeln in Potenzen um. Die Quadratwurzel von der Quadratwurzel von x hoch 8 mal y hoch 4 ist gleich die Quatwurzel von x hoch 8 mal y hoch 4 in Klammern hoch ½ ist gleich x hoch 8 mal y hoch 4 in Klammern hoch ½ in Klammern hoch ½.

Wegen der Potenzgesetze können wir die Exponenten nun multiplizieren - also gilt: x hoch 8 mal y hoch 4 in Klammern hoch in Klammern ½ mal ½. Das ist x hoch 8 mal y hoch 4 in Klammern hoch ¼. Nun können wir auch die letzte Klammer auflösen. x hoch in Klammern 8 mal 1/4 mal y hoch in Klammern 4 mal ¼. Multiplizierst du die Exponenten aus, so erhältst du als Ergebnis x hoch 2 mal y hoch 1, also x hoch 2 mal y.

Schluss

So, nun hast du eine neue Regel gelernt, mit der du Wurzeln in Potenzen und Potenzen mit beliebigen Brüchen im Exponenten in Wurzeln umformen kannst. Du hast sogar schon zwei Beispiele kennen gelernt, bei denen dir diese Umformungen die Rechnung sehr erleichtern konnten. Übe noch ein wenig dazu. Bis dahin wünsche ich dir aber noch einen tollen Tag! Tschüss!!!!

2 Kommentare
  1. @Ajenth S.: 0,5*0,5 kannst du als 1/2*1/2 schreiben, was 1/4 bzw. 0,25 ergibt. Ich hoffe, dass ich dir helfen konnte.

    Von Martin B., vor mehr als 3 Jahren
  2. 0.5*0,5 ist doch nicht 1/4

    Von Deleted User 247835, vor mehr als 3 Jahren

Videos im Thema

Wurzelrechnung – Wie rechnet man mit Wurzeln? (2 Videos)

zur Themenseite

Brüche als Exponenten Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Brüche als Exponenten kannst du es wiederholen und üben.

  • Erkläre, wie Potenzen mit Brüchen im Exponenten in Wurzeln umgeformt werden können.

    Tipps

    Es ist $4^{\frac32}=\sqrt[2]{4^3}$.

    $27^{\frac25}$ lässt sich auch als Wurzel schreiben: $\sqrt[5]{27^2}$.

    Lösung

    Was passiert mit dem Zähler und Nenner des Exponenten beim Potenzieren mit Brüchen?

    • Der Zähler des Exponenten ist der Exponent des Radikanden, des Terms unter der Wurzel, und
    • der Nenner ist die Zahl, die über der Wurzel steht. Man nennt diese Zahl auch den Wurzelexponenten.

  • Vereinfache den Wurzelterm.

    Tipps

    Verwende die Regel

    $\sqrt[n]a=a^{\frac1n}$.

    Potenzen werden potenziert, indem man die Basis mit dem Produkt der Exponenten potenziert:

    $\left(a^n\right)^m=a^{n\cdot m}$.

    Wenn man die Quadratwurzel einer Zahl $a$ berechnen will, kann man umgekehrt fragen, welche Zahl quadriert $a$ ergibt.

    Lösung

    Um die Wurzel $\sqrt[4]{16^2}$ zu berechnen, wird

    • zunächst die vierte Wurzel als Potenz mit dem Exponenten $\frac14$ geschrieben und
    • dann die Regel angewendet, dass Potenzen potenziert werden, indem die Basis mit dem Produkt der Exponenten potenziert wird:
    $\begin{align} \sqrt[4]{16^2}&=\left(16^2\right)^{\frac14}\\ &=16^{2\cdot\frac14}\\ &=16^{\frac12}. \end{align}$

    Nun ist eine Potenz mit dem Exponenten $\frac12$ die Quadratwurzel und damit ist

    $\sqrt[4]{16^2}=\sqrt{16}=4$,

    da $4^2=16$ ist.

  • Vereinfache den Term so weit wie möglich.

    Tipps

    Schreibe die Quadratwurzel als Potenz mit dem passenden Bruch als Exponenten.

    Potenzen werden potenziert, indem man die Basis mit dem Produkt der Exponenten potenziert:

    $\left(a^n\right)^m=a^{n\cdot m}$.

    Ein Produkt wird potenziert, indem jeder einzelne Faktor potenziert wird:

    $(a\cdot b)^n=a^n\cdot b^n$.

    Lösung

    Es soll der Term $\sqrt{\sqrt{x^8\cdot y^4}}$ vereinfacht werden:

    • man schreibt die Quadratwurzeln, sowohl die äußere als auch die innere als Potenzen mit dem Exponenten $\frac12$ und
    • verwendet dann die Regel, wonach Potenzen potenziert werden, indem die Basis mit dem Produkt der Exponenten potenziert wird. Dieses Produkt ist in diesem Beispiel $\frac12\cdot \frac12=\frac14$:
    $\begin{align} \sqrt{\sqrt{x^8\cdot y^4}}&=\left(\left(x^8\cdot y^4\right)^{\frac12}\right)^{\frac12}\\ &=\left(x^8\cdot y^4\right)^{\frac12\cdot \frac12}\\ &=\left(x^8\cdot y^4\right)^{\frac14}. \end{align}$

    Nun wird die Regel für das Potenzieren von Produkten verwendet:

    $\left(x^8\cdot y^4\right)^{\frac14}=\left(x^8\right)^{\frac14}\cdot\left(y^4\right)^{\frac14}$.

    Unter nochmaliger Verwendung der Regel zum Potenzieren von Potenzen führt dies zu

    $\left(x^8\right)^{\frac14}\cdot\left(y^4\right)^{\frac14}=x^{8\cdot\frac14}\cdot y^{4\cdot\frac14}=x^2\cdot y$.

  • Leite eine Formel für $\sqrt[n]{\sqrt[m]a}$ her.

    Tipps

    Potenzen werden potenziert, indem man die Basis mit dem Produkt der Exponenten potenziert:

    $\left(a^n\right)^m=a^{n\cdot m}$.

    Wurzeln können als Potenzen mit Brüchen als Exponenten geschrieben werden.

    Es gilt

    $\sqrt[n]a=a^{\frac1n}$.

    Lösung

    Es soll nachgewiesen eine Vereinfachung für das mehrfache Anwenden von Wurzeln hergeleitet werden.

    Diese Regel entspricht der Regel, dass Potenzen potenziert werden, indem die Basis mit dem Produkt der Exponenten potenziert wird.

    Da eine Wurzel als Potenz geschrieben werden kann, lässt sich eine solche Regel wie folgt herleiten:

    $\large{\begin{align*} \sqrt[n]{\sqrt[m]a}&=\left(\sqrt[m]a\right)^{\frac1n}\\ &=\left(a^{\frac1m}\right)^{\frac1n}\\ &=a^{\frac1m\cdot\frac1n}\\ &=a^{\frac1{m\cdot n}}\\ &=\sqrt[m\cdot n]a \end{align*}}$

  • Leite den Potenzterm her.

    Tipps

    Es gilt

    $a^{\frac1n}=\sqrt[n] a$.

    Die Regeln für Potenzen mit rationalen Exponenten lassen sich mit der obigen Regel sowie

    $\left(a^n\right)^m=a^{n\cdot m}$

    herleiten.

    Für Potenzen mit negativen Exponenten gilt:

    $a^{-n}=\frac1{a^n}$.

    Bei der Quadratwurzel wird der Wurzelexponent nicht hingeschrieben.

    Lösung

    Wurzeln lassen sich als Potenzen mit Brüchen im Exponenten wie folgt schreiben:

    • $\sqrt[n]{a^m}=a^{\frac mn}$ sowie
    • $\frac1{\sqrt[n]{a^m}}=a^{-\frac mn}$.
    Somit ist
    • $\frac1{\sqrt[3]{c^4}}=c^{-\frac 43}$,
    • $\sqrt[5]{c^2}=c^{\frac 25}$,
    • $\sqrt[4]{c^3}=c^{\frac 34}$ und
    • $\frac1{\sqrt{c^5}}=c^{-\frac 52}$.

  • Wende die Regeln zum Rechnen mit Wurzeln und Potenzen an, um den Term umzuformen.

    Tipps

    Das Lösungswort ist ein Ausruf:

    „..., wenn du alle Regeln gut gelernt hast, fällt dir diese Aufgabe leicht!“

    Die Regel J kommt zweimal vor.

    Lösung

    Zur Umformung des Turmes $\sqrt[3]{\left(27c^3\right)^2}$ wird zunächst die Regel O angewendet, nach der sich Wurzeln als Potenzen mit Brüchen im Exponenten schreiben lassen:

    $\sqrt[3]{\left(27c^3\right)^2}=\left(\left(27c^3\right)^2\right)^{\frac13}$.

    Nun wird die Regel angewendet, dass Potenzen potenziert werden, indem man die Basis mit dem Produkt der Exponenten potenziert (J):

    $\left(\left(27c^3\right)^2\right)^{\frac13}=\left(27c^3\right)^{2\cdot \frac13}=\left(27c^3\right)^{\frac23}$.

    Da $27=3^3$ ist kann der Term $27c^3$ zu $(3c)^3$ zusammengefasst werden (A), es gilt also:

    $\left(27c^3\right)^{\frac23}=\left((3c)^3\right)^{\frac23}$.

    Nun kann wieder die Regel zum Potenzieren von Potenzen (J) angewendet werden:

    $\left((3c)^3\right)^{\frac23}=(3c)^{3\cdot\frac23}=(3c)^2$.

    Unter nochmaliger Anwendung der Regel zum Potenzieren von Produkten (A) erhält man:

    $(3c)^2=9c^2$.