Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Die n-te Wurzel – Einführung

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.4 / 18 Bewertungen
Die Autor*innen
Avatar
Wolfgang Tews
Die n-te Wurzel – Einführung
lernst du in der 9. Klasse - 10. Klasse

Die n-te Wurzel – Einführung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Die n-te Wurzel – Einführung kannst du es wiederholen und üben.
  • Tipps

    Eine Potenz ist ein Term der Form

    $a^n$,

    dabei ist

    • $a$ die Basis, welche mit
    • $n$, dem Exponenten, potenziert wird.

    „Radizieren“ kommt von „Radix“, lateinisch für „Wurzel“.

    Wenn $2^2=4$ ist, so gilt $\sqrt 4 =2$.

    Die Wurzel einer Zahl $a$ ist die nichtnegative Zahl, welche quadriert $a$ ergibt.

    Lösung

    Um von einem $x$ zu $x^2$ zu kommen

    • potenziert man mit $2$,
    • man sagt auch Quadrieren dazu.
    Um von dem $x^2$ wieder zurück zu dem $x$ zu kommen
    • zieht man die $2$-te Wurzel oder auch Quadratwurzel oder einfach Wurzel,
    • man sagt auch Radizieren dazu.
    „Radizieren“ kommt von „Radix“, lateinisch für „Wurzel“.

  • Tipps

    Du kannst die folgenden Potenzregeln anwenden:

    • $a^1=a$ sowie
    • $\left( a^n\right)^m=a^{n\cdot m}$.

    Wenn zwei positive Zahlen mit dem gleichen Exponent potenziert den gleichen Wert liefern, so müssen die Zahlen übereinstimmen.

    Die $n$-te Wurzel kehrt das Potenzieren mit $n$ um.

    Zum Beispiel kehrt die dritte Wurzel das Potenzieren mit $3$ um:

    $\sqrt[3]{27}=3$ , da $3^3=27$ gilt.

    Lösung

    Zum Nachweis der Identität $\sqrt[n] a=a^{\frac1n}$ beginnt man mit $a=a^1=a^{\frac nn}$.

    Nun können Regeln für das Rechnen mit Potenzen angewendet werden:

    $\begin{align*} a^{\frac nn}&=a^{\frac1n \cdot n}\\ &=\left( a^{\frac1n}\right)^n. \end{align*}$

    Da die $n$-te Wurzel die Umkehrung des Potenzierens mit $n$ ist, gilt

    $\left(\sqrt[n]a\right)^n=a$.

    Da die Werte der beiden Potenzen übereinstimmen, müssen auch die Basen übereinstimmen. Es gilt also

    $\sqrt[n] a=a^{\frac1n}$.

    Da $\frac1{a^n}=a^{-\frac1n}$ ist, kann auch

    $\frac1{\sqrt[n] a}=a^{-\frac1n}$

    abgeleitet werden.

  • Tipps

    Das Ergebnis ist eine ganze Zahl.

    Die vierte Wurzel kehrt das Potenzieren mit $4$ um.

    Überlege dir, welche Zahl hoch $4$ $625$ ergibt.

    Lösung

    Die vierte Wurzel kehrt das Potenzieren mit $4$ um. Man kann sich also fragen, welche Zahl mit $4$ potenziert $625$ ergibt. Da die Einer-Zahl $5$ ist, muss auch die Zahl, welche potenziert wird als Einer eine $5$ haben.

    Es gilt $5^4=625$.

    Deshalb ist $\sqrt[4]{625}=5$.

  • Tipps

    Es gilt

    $a^{-n}=\frac1{a^n}$.

    Wird ein Bruch mit einer negativen Zahl potenziert, so kann man auch den Kehrwert des Bruches mit der positiven Zahl potenzieren:

    $\left(\frac ab\right)^{-n}=\left(\frac ba\right)^n$.

    Die Quadratwurzel kann als Potenz geschrieben werden:

    $\sqrt a=a^{\frac12}$.

    Es gilt: $\frac{1}{3}^{-\frac{1}{3}}=3 ^{\frac{1}{3}}$.

    Lösung

    Es gilt

    $0,25^{-\frac12}=\left(\frac14\right)^{-\frac12}$.

    Nun kann entweder sowohl der Zähler als auch der Nenner mit dem Exponenten potenziert werden:

    $\left(\frac14\right)^{-\frac12}=\frac1{4^{-\frac12}}=\frac1{\frac1{4^{\frac12}}}=\frac1{\frac12}=2$

    oder der Bruch mit der negativen Zahl potenziert werden, indem der Kehrwert des Bruches mit der positiven Zahl potenziert wird:

    $\left(\frac14\right)^{-\frac12}=\left(\frac41\right)^{\frac12}=4^{\frac12}=2$.

  • Tipps

    Es gilt $\left(a^{\frac1n}\right)^n=a$.

    Es gilt $\frac1{a^n}=a^{-n}$.

    Wenn $2^2=4$ ist, so gilt $\sqrt 4=2$.

    Lösung

    Die Wurzeln sind wie folgt definiert:

    • $x=\sqrt a$ ist diejenige nichtnegative Zahl, deren Quadrat $a$ ergibt. Man nennt $x$ die Quadratwurzel aus $a$.
    • Gilt $a≥0$ und $a\in \mathbb{R}$ und $n>0$, $n\in \mathbb{N}$, dann bezeichnet man mit $x=\sqrt[n] a$ diejenige nichtnegative Zahl $x$, welche mit $n$ potenziert $a$ ergibt.
    Dabei ist in der zweiten Definition $n$ der Wurzelexponent und $a$ der Radikand, die Zahl aus der die Wurzel gezogen wird.

    Wurzeln können auch als Potenzen geschrieben werden:

    • $\sqrt[n] a=a^{\frac1n}$ und
    • $\frac1{\sqrt[n] a}=a^{-\frac1n}$.

  • Tipps

    Das Erebnis ist eine Dezimalzahl mit einer Nachkommastelle.

    Es gilt $\sqrt[4]{625}=5$ und $0,0016=\frac1{625}$.

    In der Basis $0,0016$ ist die Zahl $16$ enthalten. Welche Zahl hoch $4$ ergibt $16$?

    Lösung

    Die Basis der Potenz ist $0,0016$.

    Es gilt $2^4=16$. Die Zahl $16$ ist bereits in der Basis zu finden. Die Basis ist eine Dezimalzahl handelt, welche auch so

    $0,0016=1,6\cdot 10^{-3}=16\cdot 10^{-4}$.

    Nach den Regeln zum Rechnen mit Potenzen gilt

    $\begin{align*} 0,0016^{\frac14} &=\left(16\cdot 10^{-4}\right)^{\frac14}\\ &=16^{\frac14}\cdot \left(10^{-4}\right)^{\frac14}\\ &=2\cdot 10^{-4\cdot \frac14}\\ &=2\cdot 10^{-1}\\ &=2\cdot 0,1\\ &=0,2. \end{align*}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden