Proportionale Zuordnungen
Proportionale Zuordnungen
Beschreibung Proportionale Zuordnungen
Nach dem Schauen dieses Videos wirst du in der Lage sein, proportionale Zuordnungen zu erkennen.
Zunächst lernst du, welche Eigenschaften eine proportionale Zuordnung besitzt. Anschließend lernst du, wie du mithilfe des Dreisatzes und dem Proportionalitätsfaktors verschiedene Werte berechnen kannst. Abschließend lernst du, wie der Graph zu einer proportionalen Zuordnung aussieht.
Lerne etwas über proportionale Zuordnungen.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie proportionale Zuordnung, Wertetabelle, Proportionalitätsfaktor, Gerade und Dreisatz.
Bevor du dieses Video schaust, solltest du bereits wissen, was eine Zuordnung ist.
Nach diesem Video wirst du darauf vorbereitet sein, proportionale und antiproportionale Zuordnungen miteinander zu vergleichen.
Transkript Proportionale Zuordnungen
Die Zombie-Apokalypse ist im Gange. Zombies auf den Straßen haben alle das gleiche Ziel. Fressen finden! Und am liebsten fressen sie natürlich Gehirne. Und damit die Zombies nicht vollkommen durchdrehen, benötigen sie 6 Gehirne als Nahrung für 3 Tage. Wie viele Gehirne brauchen sie denn dann für 5 Tage? Um dies zu berechnen, können wir uns den Dreisatz zur Hilfe nehmen. Wir wissen, dass sie für 3 Tage 6 Gehirne benötigen. Teilen wir beide Seiten durch 3, so sehen wir, dass es pro Tag zwei Gehirne sind. Nun multiplizieren wir beide Seiten mit 5. Für 5 Tage würde ein Zombie also 10 Gehirne benötigen. Und so eine Art von Zuordnung nennt man eine proportionale Zuordnung. In 2 Tagen fressen die Zombies also 4 Gehirne und in 4 Tagen 8 Gehirne. Bei einer Verdopplung des einen Werts verdoppelt sich auch der andere Wert. Das Vierfache eines x-Wertes wird dem vierfachen des zugehörigen y-Wertes zugeordnet. So wird auch der Hälfte eines x-Wertes, die Hälfte des y-Wertes zugeordnet. Eine Zuordnung heißt proportional, wenn dem n-fachen Wert von x der n-fache Wert von y zugeordnet wird. Betrachten wir die Werte in der Tabelle nun genauer, so können wir erkennen, dass es bei proportionalen Zuordnungen eine weitere Besonderheit gibt. Der Quotient y geteilt durch x ist für alle Wertepaare gleich groß und heißt Proportionalitätsfaktor k. Die Wertepaare heißen dann quotientengleich. Teilen wir hier die y-Werte durch die x-Werte, so erhalten wir jedes mal zwei. k ist also zwei. Stellen wir diese Gleichung um, so erhalten wir y ist gleich k mal x und können so alle Werte der Zuordnung berechnen. In unserem Fall haben wir also y ist gleich zwei mal x. Setzen wir für x 6 ein, so können wir also die benötigte Gehirnanzahl für 6 Tage herausfinden. Das sind 12. Wir können uns die Wertepaare nun zur Hilfe nehmen, um den Graphen der Zuordnung in ein Koordinatensystem einzuzeichnen. Auf der x-Achse sind die Tage und auf der y-Achse die Anzahl der benötigten Gehirne. Tragen wir die verschiedenen Wertepaare nun ein so sehen wir was für eine Form der Graph der Zuordnung hat. Bei proportionalen Zuordnungen liegen alle Punkte des zugehörigen Graphen auf einer Geraden und diese Geraden verlaufen immer durch den Ursprung. Während die Zombies noch weiter auf der Suche nach Gehirnen sind, fassen wir zusammen. Eine Zuordnung heißt proportional, wenn dem n-fachen Wert von x der n-fache Wert von y zugeordnet wird. Wenn sich der x-Wert verdoppelt, so verdoppelt sich auch der y-Wert und umgekehrt. Fehlende Werte kann man mit dem Dreisatz berechnen. Der Quotient y geteilt durch x ist für alle Wertepaare gleich groß. Diesen Quotienten nennen wir den Proportionalitätsfaktor k. Stellen wir diese Gleichung nach y um, so können wir alle weiteren Werte berechnen. Tragen wir die Punkte der Zuordnung in ein Koordinatensystem ein, so sehen wir, dass sich der Graph in der Form einer Geraden durch den Ursprung ergibt. Und das Essen ist anscheinend zubereitet. Huh, ein Kopf-salat?! Der war als Mensch wohl Vegetarier.
Proportionale Zuordnungen Übung
-
Vervollständige die Tabelle der proportionalen Zuordnung.
TippsEine Zuordnung heißt proportional, wenn dem $n$-fachen Wert von $x$ der $n$-fache Wert von $y$ zugeordnet wird. Das heißt:
- Bei einer Verdopplung des einen Werts verdoppelt sich auch der andere Wert.
- Bei einer Halbierung des einen Werts halbiert sich auch der andere Wert.
Hier siehst du eine Tabelle zu einer proportionalen Zuordnung.
LösungEine Zuordnung heißt proportional, wenn dem $n$-fachen Wert einer Größe der $n$-fache Wert der anderen Größe zugeordnet wird. Das heißt:
- Bei einer Verdopplung des einen Werts verdoppelt sich auch der andere Wert.
- Bei einer Halbierung des einen Werts halbiert sich auch der andere Wert.
- $3$ Tage $\quad\Longleftrightarrow\quad$ $6$ Gehirne
- $3$ Tage $:\color{#669900}{3}=1$ Tag $\quad\Longleftrightarrow\quad$ $6$ Gehirne $:\color{#669900}{3}=2$ Gehirne
$\begin{array}{l|l} \text{Tage} & \text{Gehirne} \\ \hline 1 & 2 \\ 1\cdot \color{#669900}{2}=2 & 2\cdot \color{#669900}{2}=4 \\ 1\cdot \color{#669900}{4}=4 & 2\cdot \color{#669900}{4}=8 \\ 1\cdot \color{#669900}{5}=5 & 2\cdot \color{#669900}{5}=10 \end{array}$
-
Bestimme den Proportionalitätsfaktor $k$.
TippsDie Gleichung einer proportionalen Zuordnung ist allgemein wie folgt definiert:
- $y=kx$
Bei einer proportionalen Zuordnung gilt:
Wenn sich die eine Größe verkleinert, verkleinert sich auch die andere Größe. Die Veränderung läuft gleichmäßig ab. Es gilt also:
- Halbieren wir die eine Größe, halbiert sich auch die andere Größe.
LösungEine Zuordnung heißt proportional, wenn dem $n$-fachen Wert von $x$ der $n$-fache Wert von $y$ zugeordnet wird. Daher gilt bei einer proportionalen Zuordnung:
- Je mehr, desto mehr.
- Je weniger, desto weniger.
- Bei einer Verdopplung des $x$-Werts verdoppelt sich der $y$-Wert.
- Bei einer Halbierung des $x$-Werts halbiert sich der $y$-Wert.
Nun betrachten wir das Beispiel:
Da die Zombies als Nahrung $6$ Gehirne ($y$) für $3$ Tage ($x$) benötigen und es sich hierbei um eine proportionale Zuordnung handelt, beträgt der Proportionalitätsfaktor:
- $k=\frac yx=\frac 63=2$
Damit kann man folgende Gleichung für die Berechnung der Anzahl der Gehirne ($y$) in Abhängigkeit von den Tagen ($x$) aufstellen:
- $y=2x$
-
Bestimme die Strecken ausgehend von einer proportionalen Zuordnung.
TippsDu kannst die Wertepaare in einer Tabelle berechnen:
$\begin{array}{c|c} \text{Stunden} & \text{Strecke in km} \\ \hline 4 & 160 \end{array}$
Du musst nun links und rechts jeweils mit demselben Faktor multiplizieren, um die gewünschten Stunden und die zugehörigen Strecken zu erhalten.
Du kannst auch eine Gleichung der Form $y=kx$ aufstellen. Dabei steht $x$ für die Stunden, $y$ für die Strecke und $k$ ist der Proportionalitätsfaktor $\frac yx$.
LösungIm Folgenden betrachten wir eine proportionale Zuordnung. Dabei gehen wir von folgendem Wertepaar aus:
- $4$ Stunden $\rightarrow$ $160$ Kilometer
- $1$ Stunde $\rightarrow$ $40$ Kilometer
$\begin{array}{cc|c} & \text{Zeit in Stunden} & \text{Strecke in Kilometern} \\ \hline & 2 & 80 \\ & 3 & 120 \\ & 6 & 240 \\ & 8 & 320 \end{array}$
Du kannst aber auch die Gleichung $y=kx$ aufstellen, dabei ist $k=\frac yx$ der Proportionalitätsfaktor. Es folgt:
- $y=\frac {160}{4}x=40x$
-
Prüfe, ob es sich um eine proportionale Zuordnung handelt.
TippsIst eine Zuordnung proportional, so liegt Quotientengleichheit vor.
Du kannst Zuordnungen auf Quotientengleichheit prüfen, indem du wie folgt die Quotienten der Wertepaare bildest:
$ \begin{array}{ccc|c} x && y & \frac yx \\ \hline 0,1 & \rightarrow & 4 & \frac 4{0,1}=40 \\ 0,3 & \rightarrow & 12 & \frac {12}{0,3}=40\\ 0,2 & \rightarrow & 8 & \frac 8{0,2}=40 \end{array} $
Hierbei handelt es sich um eine proportionale Zuordnung, da Quotientengleichheit vorliegt.
LösungIst eine Zuordnung proportional, so liegt Quotientengleichheit vor. Wir können Zuordnungen auf Quotientengleichheit prüfen, indem wir die Quotienten der Wertepaare bilden. So erhalten wir folgende Lösungen:
Beispiel 1
$ \begin{array}{lll|l} x && y & \frac yx \\ \hline 4 & \rightarrow & 9 & \frac 9{4}=2,25 \\ 3 & \rightarrow & 8 & \frac 8{3}=2,\overline{6} \\ 2 & \rightarrow & 7 & \frac 7{2}=3,5 \end{array} $
Da hier keine Quotientengleichheit vorliegt, handelt es sich hierbei um keine proportionale Zuordnung.
Beispiel 2
$ \begin{array}{lll|l} x && y & \frac yx \\ \hline 3 & \rightarrow & 3 & \frac 3{3}=1 \\ 2 & \rightarrow & 2 & \frac {2}{2}=1\\ 1 & \rightarrow & 1 & \frac 3{3}=1 \end{array} $
Da hier Quotientengleichheit vorliegt, handelt es sich um eine proportionale Zuordnung.
Beispiel 3
$ \begin{array}{lll|l} x && y & \frac yx \\ \hline 6 & \rightarrow & 3 & \frac 3{6}=\frac 12 \\ 4 & \rightarrow & 2 & \frac 24=\frac 12 \\ 2 & \rightarrow & 1 & \frac 12 \end{array} $
Da wieder Quotientengleichheit vorliegt, ist auch dies eine proportionale Zuordnung.
Beispiel 4
$ \begin{array}{lll|l} x && y & \frac yx \\ \hline 1 & \rightarrow & 3 & \frac 31=3 \\ 2 & \rightarrow & 2 & \frac 22=1 \\ 3 & \rightarrow & 1 & \frac 13=\frac 13 \end{array} $
Da hier keine Quotientengleichheit vorliegt, handelt es sich hierbei um keine proportionale Zuordnung.
Beispiel 5
$ \begin{array}{lll|l} x && y & \frac yx \\ \hline 9 & \rightarrow & 3 & \frac 3{9}=\frac 13 \\ 6 & \rightarrow & 2 & \frac 26=\frac 13 \\ 3 & \rightarrow & 1 & \frac 13 \end{array} $
Hier liegt noch einmal Quotientengleichheit vor, und damit auch eine proportionale Zuordnung.
-
Erstelle den Graphen der proportionalen Zuordnung.
TippsDer Graph einer proportionalen Zuordnung verläuft immer durch den Koordinatenursprung.
Du kannst mit dem Proportionalitätsfaktor $k=\frac yx$ eine Gleichung der Form $y=kx$ aufstellen und für verschiedene $x$-Werte die zugehörigen $y$-Werte bestimmen.
LösungWir können mit dem Proportionalitätsfaktor $k=\frac yx$ eine Gleichung der Form $y=kx$ aufstellen und für verschiedene $x$-Werte die zugehörigen $y$-Werte bestimmen. Dann können wir unsere Wertepaare mit den Punkten der gegebenen Geraden vergleichen.
Allerdings genügt es für das Zeichnen einer Geraden schon, nur zwei Punkte zu kennen. Ein Punkt ist mit $x=3$ und $y=6$ bereits gegeben. Aber wir kennen noch einen weiteren Punkt, nämlich den Koordinatenursprung, denn der Graph jeder proportionalen Funktion verläuft durch den Punkt $(0\vert 0)$.
Damit sind die Geraden 1, 4 und 5 korrekt. Sie unterscheiden sich nur in der Skalierung ihrer Achsen.
-
Ermittle den gesuchten $x$-Wert.
TippsFolgende Wertetabelle gibt einige Wertepaare zu Maries Taschen-Geschäft an.
$ \begin{array}{c|c} \text{Anzahl verkaufter} & \text{Einkommen} \\ \text{Taschen} & \\ \hline 0 & 0,00\ € \\ 1 & 15,50\ € \\ 2 & 31\ € \end{array} $
Der Proportionalitätsfaktor einer proportionalen Zuordnung ist wie folgt definiert:
- $k=yx$
LösungAus der Aufgabenstellung kennen wir das Wertepaar $(1\vert 15,5)$. Mit diesem können wir den Proportionalitätsfaktor $k$ der proportionalen Zuordnung wie folgt berechnen:
- $k=\frac{y}{x}=\frac{15,5}{1}=15,5$
- $y=15,5\cdot x$
- $x=\frac{y}{15,5}$
- $x=\frac{124}{15,5}=8$

Was ist eine Zuordnung?

Proportionale Zuordnungen

Antiproportionale Zuordnungen

Proportionalitätsfaktor und Antiproportionalitätsfaktor

Direkte Proportionalität

Von der Wertetabelle zur Gleichung

Graphen proportionaler Zuordnungen

Proportionale Zuordnungen mit negativer Steigung

Proprotionale Zuordnungen vergleichen

Umgekehrt proportionale Funktionen - Einführung 1

Umgekehrt proportionale Funktionen - Einführung 2

Zuordnungen – Erklärung und Darstellung

Proportionale Zuordnungen – Einführung (Vertiefungswissen)

Proportionale Zuordnungen erkennen

Proportionale Zuordnungen (Übungsvideo)

Antiproportionale Zuordnungen – Einführung (Vertiefungswissen)

Antiproportionale Zuordnungen erkennen

Antiproportionale Zuordnungen (Übungsvideo)

Antiproportionale Funktionen – Punkt auf Graph

Antiproportionale Funktionen – Flächengleiche Rechtecke (1)

Antiproportionale Funktionen – Flächengleiche Rechtecke (2)

Antiproportionale Funktionen – Geschwindigkeit

Antiproportionale Funktionen – Leistung

Zuordnung – Zugzeit zu Höhe

Zuordnung – Jahre zu Wert

Zuordnung – Zeit zu Wandabstand

Zuordnung – Zeit zu Füllhöhe

Zuordnung – Weg zu Geschwindigkeit
22 Kommentare
Vielleicht nicht so gruselige Geschichten nehmen, die machen Kindern wirklich Angst, außerdem kann man dann nicht mehr so gut lernen
Eigentlich ganz easy, danke! 😉
Super ! Ich finde es auch toll ,wie ihr immer Geschichten dazu macht.
Das ist eine echt gute erklären und ich habe es jetzt besser verstanden.
Vielen Dank!!!!