sofatutor 30 Tage
kostenlos ausprobieren

Videos & Übungen für alle Fächer & Klassenstufen

Proportionalitätsfaktor und Antiproportionalitätsfaktor 04:44 min

Textversion des Videos

Transkript Proportionalitätsfaktor und Antiproportionalitätsfaktor

Cooper liebt es in seiner Zeitmaschine durch verschiedene Zeiten zu reisen. Seine Zeitmaschine basiert dabei auf Proportionalitäts- und Antiproportionalitätsfaktoren. Pro Reise bekommt Cooper 10 graue Haare. Je mehr Reisen Cooper durchführt, desto mehr graue Haare wird er haben. Das heißt, dass er, wenn er 2 Reisen durchführt, 20 graue Haare haben wird. Bei drei Reisen dreißig graue Haare und bei 4 Reisen 40 graue Haare. Verdoppelt sich die Anzahl der Reisen, so verdoppelt sich auch die Anzahl der grauen Haare. Verdreifacht sich die Anzahl der Reisen, so verdreifacht sich die Anzahl der grauen Haare und so weiter. Und so eine Art von Zuordnung nennt man eine proportionale Zuordnung. Betrachten wir die Werte in der Tabelle nun genauer, so können wir erkennen, dass es bei proportionalen Zuordnungen eine weitere Besonderheit gibt. Der Quotient y geteilt durch x ist für alle Wertepaare gleich groß und heißt Proportionalitätsfaktor k. Die Wertepaare heißen dann quotientengleich. Teilen wir hier die y-Werte durch die x-Werte, so erhalten wir jedes mal zehn. k ist also zehn. Allgemein wissen wir, dass k = y durch x ist. Stellen wir diese Gleichung um, so erhalten wir y ist gleich k mal x und können so alle Werte der Zuordnung berechnen. In unserem Fall haben wir also y ist gleich zehn mal x. Mithilfe des Proportionalitätsfaktors kann man also eine Gleichung aufstellen, die dabei hilft, Werte der Zuordnung zu bestimmen. Wenn Cooper die Zeitmaschine 2 Stunden pro Tag benutzt, reicht der Akku 12 Tage lang. Das heißt, dass er 12 Tage lang reisen kann, ohne die Zeitmaschine aufzuladen. Würde er die Zeitmaschine 4 Stunden täglich benutzen, so würde der Akku nur 6 Tage lang halten bei 6 Stunden täglich nur 4 Tage. Benutzt er sie 8 Stunden täglich, so hält sie sogar nur 3 Tage. Und so eine Art von Zuordnung nennt man eine antiproportionale Zuordnung. Bei einer Verdopplung des einen Werts halbiert sich also der andere Wert. Bei einer Verdreifachung des einen Wertes ergibt sich der dritte Teil des anderen Wertes. Die Werte sind produktgleich. Das Produkt x mal y ist für alle Wertepaare gleich groß. Wir nennen dieses Produkt auch Antiproportionalitätsfaktor p. In diesem Fall ergibt das Produkt von x und y immer 24. p ist also 24. Allgemein wissen wir, dass p = x mal y ist. Stellen wir diese Gleichung um, so erhalten wir y ist gleich p geteilt durch x. In unserem Fall haben wir dann y= 24 durch x. Mit dieser Gleichung können wir nun alle möglichen Werte herausfinden. Während Cooper weiter in verschiedene Zeiten reist, fassen wir zusammen. Eine Zuordnung heißt proportional, wenn dem n-fachen Wert von x der n-fache Wert von y zugeordnet wird. Der Quotient y geteilt durch x ist für alle Wertepaare gleich groß. Diesen Quotienten nennen wir den Proportionalitätsfaktor k. Eine Zuordnung heißt antiproportional, wenn dem n-fachen Wert von x der n-te Teil des Wertes von y zugeordnet wird. Das Produkt x mal y ist für alle Wertepaare gleich groß. Wir nennen es Antiproportionalitätsfaktor p. Und wo hat es Cooper nun hin verschlagen? Die Eiszeit?! Hoffentlich hat er noch einen Plan B.

6 Kommentare
  1. danke, bin jetzt besser für die Arbeit vorbereitet

    Von Agnes P., vor etwa 8 Stunden
  2. Das Video war sehr hilfreich und gut erklärt, danke!

    Von Paulina Goewert, vor etwa 24 Stunden
  3. Hat mir sehr geholfen(:

    Von Severinas, vor 15 Tagen
  4. Gibt es eine allgemeine Formel für den Proportionalitätsfaktor?

    Von Katja Stuerken, vor 20 Tagen
  5. können wir nicht auch in die Gegenwart reisen ;)

    Von Lavinius Cristian, vor 2 Monaten
Mehr Kommentare

Proportionalitätsfaktor und Antiproportionalitätsfaktor Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Proportionalitätsfaktor und Antiproportionalitätsfaktor kannst du es wiederholen und üben.

  • Gib die fehlenden Werte der antiproportionalen Zuordnung wieder.

    Tipps

    Den Antiproportionalitätsfaktor berechnest du durch $x\cdot y$.

    Wir stellen also fest: Je mehr Stunden Cooper reist, desto weniger Tage hält der Akku.

    Versechsfacht sich also die Anzahl der Stunden auf $12$, müssen wir auch rechnen: $12:6=2$. Reist Cooper also $12$ Stunden pro Tag, hält der Akku nur $2$ Tage.

    Lösung

    Wenn der Zeitreisende Cooper die Zeitmaschine $2$ Stunden pro Tag benutzt, reicht der Akku $12$ Tage lang. Würde er die Zeitmaschine $4$ Stunden täglich benutzen, so würde der Akku nur $6$ Tage lang halten. Wir stellen also fest, je mehr Stunden Cooper reist, desto weniger Tage hält der Akku.

    Wir sprechen von einer antiproportionalen Zuordnung.

    Tragen wir zunächst die Werte für $2$ und $4$ Stunden ein, stellen wir fest, dass wenn sich die Anzahl der Reisestunden verdoppelt, sich die Anzahl der Tage für die Akkudauer halbiert.

    Verdreifacht sich also die Anzahl der Stunden auf $6$, müssen wir auch rechnen: $12:3=4$. Reist Cooper also $6$ Stunden pro Tag, hält der Akku nur $4$ Tage.

    Teilen wir die Anzahl der Tage durch $4$, erhalten wir noch $3$ Tage Akkulaufzeit. Um die Anzahl an Stunden zu bestimmen, multiplizieren wir: $2\cdot 4=8$.

    Cooper stellt fest, dass es bei antiproportionalen Zuordnungen eine weitere Besonderheit gibt:

    • Das Produkt von $x$ und $y$ ist für alle Wertepaare gleich groß und heißt Antiproportionalitätsfaktor $p$. Die Wertepaare heißen produktgleich.
    Multiplizieren wir jeweils die $x$-Werte mit den $y$-Werten, so erhalten wir jedes mal $24$.

    Es gilt nämlich:

    • $2\cdot 12=24$
    • $4\cdot 6=24$
    • $6\cdot 4=24$ usw.
  • Beschreibe, wie du den Proportionalitätsfaktor bestimmst.

    Tipps

    Teilen wir die $y$-Werte (Anzahl an grauen Haaren) durch die zugehörigen $x$-Werte (Anzahl an Reisen), erhalten wir:

    • $20:2=10$
    • $30:3=10$
    • $40:4=10$

    Je weniger Reisen Cooper durchführt, desto weniger graue Haare bekommt er.

    Eine proportionale Zuordnung wird auch „je-mehr-desto-mehr“ Zuordnung genannt.

    Lösung

    Cooper liebt es, in seiner Zeitmaschine durch verschiedene Zeiten zu reisen. Pro Reise bekommt Cooper $10$ graue Haare. Je mehr Reisen Cooper durchführt, desto mehr graue Haare bekommt er. Also umgekehrt auch: Je weniger Reisen Cooper durchführt, desto weniger graue Haare bekommt er.

    • Nach $2$ Reisen hat er $2\cdot 10=20$ graue Haare.
    • Nach $3$ Reisen hat er $3\cdot 10=30$ graue Haare.
    • Nach $4$ Reisen hat er $4\cdot 10=40$ graue Haare.
    Wir erkennen also: Verdoppelt sich die Anzahl der Reisen, so verdoppelt sich auch die Anzahl der grauen Haare. Verdreifacht sich die Anzahl der Reisen, so verdreifacht sich die Anzahl der grauen Haare und so weiter. Und so eine Art von Zuordnung nennt man eine proportionale Zuordnung.

    Cooper stellt fest, dass es bei proportionalen Zuordnungen eine weitere Besonderheit gibt:

    • Der Quotient, $y$ geteilt durch $x$, ist für alle Wertepaare gleich groß und heißt Proportionalitätsfaktor $k$. Die Wertepaare heißen quotientengleich.
    Teilen wir hier die $y$-Werte durch die $x$-Werte, so erhalten wir jedes mal $10$.

    Es gilt nämlich:

    • $20:2=10$
    • $30:3=10$
    • $40:4=10$ usw.
    Der Proportionalitätsfaktor beträgt also $k=10$.

  • Ermittle anhand des Faktors, ob die Funktion proportional oder antiproportional ist.

    Tipps

    Bei proportionalen Zuordnungen sind die Wertepaare quotientengleich, betrachte also den Quotienten $y:x$.

    Bei antiproportionalen Zuordnungen sind die Wertepaare produktgleich, betrachte also das Produkt $x\cdot y$.

    Lösung

    Handelt es sich um eine proportionale Zuordnung, so sind die Wertepaare quotientengleich. Für den Proportionalitätsfaktor $k$ dividieren wir den $y$-Wert jeweils durch den zugehörigen $x$-Wert.

    Handelt es sich um eine antiproportionale Zuordnung, so sind die Wertepaare produktgleich. Für den Antiproportionalitätsfaktor $p$ multiplizieren wir den $x$-Wert jeweils mit dem zugehörigen $y$-Wert.

    Also folgt:

    $1.$ Antiproportionale Zuordnung

    $\begin{array}{c|c} x&y\\ \hline 3&2\\ \hline 6&1\\ \hline 2&3\\ \end{array}$

    Es gilt: $3\cdot 2=6\cdot 1=2\cdot 3=6$, aber: $2: 3\neq 1: 6\neq 3: 2\neq 6$

    • Antiproportionalitätsfaktor: $p=6$
    $2.$ Proportionale Zuordnung

    $\begin{array}{c|c} x&y\\ \hline 2&3\\ \hline 4&6\\ \hline 6&9\\ \end{array}$

    Es gilt: $3: 2= 6: 4= 9: 6= 1,5$, aber: $2\cdot 3\neq 4\cdot 6\neq 3\cdot 9\neq1,5$.

    • Proportionalitätsfaktor: $k=1,5$
    $3.$ Proportionale Zuordnung

    $\begin{array}{c|c} x&y\\ \hline 2&16\\ \hline 4&32\\ \hline 7&56\\ \end{array}$

    Es gilt: $16: 2= 32: 4= 56: 7= 8$, aber: $2\cdot 16\neq 4\cdot 32\neq 7\cdot 56\neq 8$.

    • Proportionalitätsfaktor: $k=8$
    $4.$ Weder proportionale noch antiproportionale Zuordnung

    $\begin{array}{c|c} x&y\\ \hline 2&8\\ \hline 4&16\\ \hline 6&30\\ \end{array}$

    Die Wertepaare sind weder quotienten- noch produktgleich. Betrachte zum Beispiel:

    $(4,16)$ und $(6,30)$

    • $4\cdot 16= 64\neq180=6\cdot30$
    • $16:4= 4\neq 5=30:6$
  • Bestimme den Proportionalitätsfaktor $k$ oder den Antiproportionalitätsfaktor $p$.

    Tipps

    Handelt es sich um eine antiproportionale Zuordnung, so sind die Wertepaare produktgleich. Für den Antiproportionalitätsfaktor $p$ multiplizieren wir den $x$-Wert jeweils mit dem zugehörigen $y$-Wert.

    Handelt es sich um eine proportionale Zuordnung, so sind die Wertepaare quotientengleich. Für den Proportionalitätsfaktor $k$ dividieren wir den $y$-Wert jeweils durch den zugehörigen $x$-Wert.

    Lösung

    $1.$ Hierbei handelt es sich um eine proportionale Zuordnung, das heißt, die Wertepaare sind quotientengleich. Für den Proportionalitätsfaktor $k$ dividieren wir den $y$-Wert jeweils durch den zugehörigen $x$-Wert:

    $\begin{array}{c|c|c} x&y&k\\ \hline 2&10&5\\ \hline 6&30&5\\ \hline 8&40&5\\ \end{array}$

    $2.$ Hierbei handelt es sich um eine proportionale Zuordnung, das heißt, die Wertepaare sind quotientengleich. Für den Proportionalitätsfaktor $k$ dividieren wir den $y$-Wert jeweils durch den zugehörigen $x$-Wert:

    $\begin{array}{c|c|c} x&y&k\\ \hline 1&7&7\\ \hline 3&21&7\\ \hline 6&42&7\\ \end{array}$

    $3.$ Hierbei handelt es sich um eine antiproportionale Zuordnung, das heißt, die Wertepaare sind produktgleich. Für den Antiproportionalitätsfaktor $p$ multiplizieren wir den $x$-Wert jeweils mit dem zugehörigen $y$-Wert:

    $\begin{array}{c|c|c} x&y&p\\ \hline 1&5&5\\ \hline 2,5&2&5\\ \hline 5&1&5\\ \end{array}$

    $4.$ Hierbei handelt es sich um eine antiproportionale Zuordnung, das heißt, die Wertepaare sind produktgleich. Für den Antiproportionalitätsfaktor $p$ multiplizieren wir den $x$-Wert jeweils mit dem zugehörigen $y$-Wert:

    $\begin{array}{c|c|c} x&y&p\\ \hline 5&16&80\\ \hline 10&8&80\\ \hline 20&4&80\\ \end{array}$

  • Zeige die Eigenschaften des Proportionalitäts- und Antiproportionalitätsfaktors auf.

    Tipps

    Betrachte dazu die folgende proportionale Zuordnung:

    • Pro Reise bekommt der Zeitreisende Cooper $10$ neue graue Haare.
    Erstelle hierzu eine Wertetabelle.

    $\begin{array}{c|c} \text{Reisetage}(x)&\text{graue Haare}(y)\\ \hline 1&10\\ \hline 2&20\\ \hline 3&30\\ \end{array}$

    Betrachte dazu die folgende antiproportionale Zuordnung:

    • Je mehr Stunden Cooper die Zeitmaschine pro Tag nutzt, desto weniger Tage hält der Akku.
    $\begin{array}{c|c} \text{Reisestunden}(x)&\text{Tage an Akkudauer}(y)\\ \hline 2&12\\ \hline 4&6\\ \hline 6&4\\ \end{array}$

    Lösung
    • Bei einer proportionalen Zuordnung ist der Quotient $y$ geteilt durch $x$ für alle Wertepaare gleich groß und heißt Proportionalitätsfaktor $k$.
    Betrachte dazu die folgende proportionale Zuordnung: Pro Reise bekommt der Zeitreisende Cooper $10$ neue graue Haare.

    $\begin{array}{c|c|c} \text{Reisetage }(x)&\text{graue Haare }(y)&\text{Proportionalitätsfaktor}\\ \hline 1&10&10\\ \hline 2&20&10\\ \hline 3&30&10\\ \end{array}$

    • Die Wertepaare bei einer proportionalen Zuordnung heißen quotientengleich.
    Es gilt nämlich:
    • $20:2=10$
    • $30:3=10$
    • $40:4=10$
    • Bei einer antiproportionalen Zuordnung ist das Produkt von $x$ und $y$ für alle Wertepaare gleich groß und heißt Antiproportionalitätsfaktor $p$.
    Betrachte dazu die folgende antiproportionale Zuordnung: Je mehr Stunden Cooper die Zeitmaschine pro Tag nutzt, desto weniger Tage hält der Akku.

    $\begin{array}{c|c|c} \text{Reisestunden }(x)&\text{Tage an Akkudauer }(y)&\text{Antiproportionalitätsfaktor}\\ \hline 2&12&24\\ \hline 4&6&24\\ \hline 6&4&24\\ \end{array}$

    • Die Wertepaare bei einer antiproportionalen Zuordnung heißen produktgleich.
    Es gilt nämlich:
    • $2 \cdot 12=24$
    • $4 \cdot 6=24$
    • $6 \cdot 4=24$
  • Entscheide, ob die Zuordnung proportional oder antiproportional ist und berechne den entsprechenden Faktor.

    Tipps

    Antiproportionale Zuordnungen werden auch „je-mehr-desto-weniger“-Zuordnungen genannt.

    Für proportionale Zuordnungen müssen alle Wertepaare quotientengleich sein.

    Lösung

    • $1.$ Marie kauft Erdbeeren. $1 \text{ kg}$ kostet $3€$, $2 \text{ kg}$ kosten $6€$, $3 \text{ kg}$ kosten $7€$.
    Wir erkennen, dass mehr Erdbeeren auch mehr kosten, es kann also keine antiproportionale Zuordnung sein. Wir stellen nun eine Wertetabelle auf und bestimmen den Quotienten der einzelnen Wertepaare:

    $\begin{array}{c|c|c} x&y&y:x \\ \hline 1&3&3\\ \hline 2&6&3\\ \hline 3&7&\text{ca.} 2,33\\ \end{array}$

    Da die Quotienten nicht gleich sind, ist die Zuordnung weder proportional noch antiproportional.

    • $2.$ Jona streicht sein Zimmer. Alleine braucht er $6$ Stunden, hilft ihm sein Bruder, dauert es nur $3$ Stunden.
    Wir erkennen, dass es bei mehr Leuten weniger Stunden dauert, es kann also keine proportionale Zuordnung sein. Wir stellen nun eine Wertetabelle auf und bestimmen das Produkt der einzelnen Wertepaare:

    $\begin{array}{c|c|c} x&y&x\cdot y\\ \hline 1&6&6\\ \hline 2&3&6\\ \end{array}$

    Da die Produkte gleich sind, ist die Zuordnung antiproportional und der Antiproportionalitätsfaktor beträgt: $p=6$.

    • $3.$ Felix tankt sein Auto. Mit $50\text { l}$ Benzin kommt er $1000\text{ km}$ weit, mit $25\text { l}$ Benzin kommt er $500\text{ km}$ und mit $10\text { l}$ Benzin kommt er $200\text{ km}$.
    Wir erkennen, dass mehr Benzin auch für mehr Kilometer reicht, es kann also keine antiproportionale Zuordnung sein. Wir stellen nun eine Wertetabelle auf und bestimmen den Quotienten der einzelnen Wertepaare:

    $\begin{array}{c|c|c} x&y&y:x \\ \hline 50&1000&20\\ \hline 25&500&20\\ \hline 10&200&20\\ \end{array}$

    Da die Quotienten gleich sind, ist die Zuordnung proportional und der Proportionalitätsfaktor beträgt: $k=20$.