30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Jetzt Teil der Test-Community werden und tolle Dankeschöns kassieren!

Direkte Proportionalität 04:23 min

Textversion des Videos

Transkript Direkte Proportionalität

Willkommen zur intergalaktischen Olympiade 3005. Lasst die Spiele beginnen. Schauen wir uns ein paar unserer Spitzenathleten an: Stärkules, vom Planeten Adonis, kann 3000 Kilogramm stemmen. Und hier ist ein weiterer Favorit: Pumpi, vom Planeten BMI. Er kann zwei Kilogramm heben. Damit steht es zwischen den beiden im Moment unentschieden. Unglaublich, was für ein Krimi. Wie bitte? Du verstehst nicht wie sie gleichauf sein können? Dabei helfen kann dir die direkte Proportionalität. Dabei stehen zwei größeren in einem festen Verhältnis zueinander. Nennen wir das Gewicht, das Stärkules hebt „y“ und das Gewicht, das Pumpi hebt „x“. Wie schon gesagt, steht es zwischen den beiden unentschieden, aber 3000 Kilogramm sind offensichtlich viel mehr als zwei Kilogramm. Wie kann das sein? Je größer die Masse eines Planeten ist desto größer ist auch seine Anziehungskraft. Das Verhältnis der beiden Größen ist der Proportionalitätsfaktor „k“. Nun können wir die bekannten Werte in die Gleichung einsetzen. Es ist egal, welchen Wert man für „x“ und welchen für „y“ einsetzt, solange es einheitlich ist. Sagen wir x = 2 und y = 3000. Wir teilen beide Seiten der Gleichung durch 2 und erhalten k = 1500. Schau dir das an: Wenn wir die 3000 Kilogramm verdoppeln, verdoppelt sich auch der x-Wert. Sind Größen direkt proportional, dann verändern sich beide Größen in gleichem Maße. Was passiert wohl, wenn eine Größe kleiner wird? Wenn wir eine Größe durch vier teilen, teilen wir auch die andere durch den Faktor vier. Da „k“ unsere Konstante ist, ändert sie sich niemals. Wenn Stärkules auf seinem Heimatplaneten 4500 Kilogramm hebt, ist das das Gleiche, als ob Pumpi, auf seinem Planeten, drei Kilogramm hebt. Für je 1500 Kilogramm, die Stärkules zusätzlich hebt, muss Pumpi ein Kilogramm zusätzlich heben, damit es weiter unentschieden steht. Pumpi vom Planeten BMI macht auch beim Hochsprung mit. Er kann einen Meter hochspringen. Wow, das ist eine echte Höchstleistung. Arnie stammt vom Planeten Muskolon. Dort herrscht eine geringere Anziehungskraft. Obwohl er mit Pumpi gleichzieht, ist seine absolute Sprunghöhe größer. Und zwar sechs Meter. Vergleichen wir die Sprunghöhen durch einen Graphen. Die Gerade geht durch den Ursprung. Das tun Graphen direkt proportionaler Größen immer. Der y-Achsenabschnitt des Graphen ist also „0“. Schau dir folgende Formel zur Berechnung des Proportionalitätsfaktors „k“ an. Kommt sie dir bekannt vor? Keine Frage. Es ist die Gleichung für die Steigung der Geraden. Ist „k“ also gleich der Steigung? Wieder keine Frage. Setzen wir mal unsere Werte ein und ermitteln „k“. Das Ergebnis: k = 6. Kommen wir zum Meteoritenweitwurf. Stärkules, vom Planeten Adonis, hat seinen Meteoriten 100 Kilometer weit geworfen. Und Arnie, vom Planeten Muskolon, seinen zwei Kilometer weit. Um zu sehen, welcher Sportler gerade vorne liegt, hat das interstellare Komitee, für Gewichte und Maßeinheiten, folgende Tabelle entworfen. Ach was. Da besteht eine direkte Proportionalität, denn „k“ ist immer gleich. Wieder ein Unentschieden. Jetzt ist Stärkules wieder an der Reihe. Oh Mann. Das wird bestimmt ein Jahrhundertwurf. Und er fliegt. Ob das ein neuer Rekord ist? Na, auf der Erde wird er jedenfalls einen bleibenden Eindruck hinterlassen. Oh je, das ist also mit den Dinosauriern passiert?

10 Kommentare
  1. Einfach schlecht gemacht

    Von Chikaria, vor etwa 2 Monaten
  2. ich finde das man sich durch die viele Gestaltung nicht auf das Thema konzentrieren kann von dem her nicht sehr informativ

    Von Paulina P., vor 3 Monaten
  3. Hallo Nr0 1,
    danke für deinen Kommentar. Wir arbeiten stetig an der Verbesserung unserer Inhalte und freuen uns immer über Feedback.
    Liebe Grüße aus der Redaktion

    Von Jonas Dörr, vor 3 Monaten
  4. zu viel Gestaltung zu wenig erklärt 🙂

    Von Nr0 1, vor 3 Monaten
  5. Hallo Sschelske4,
    kannst du genauer sagen, was dir an diesem Video nicht gefallen hat? Wurde beispielsweise etwas deiner Ansicht nach nicht ausführlich genug erklärt? Wir freuen uns immer über Verbesserungsvorschläge.
    Liebe Grüße aus der Redaktion

    Von Jeanne O., vor 9 Monaten
  1. Schlecht

    Von Sschelske4, vor 9 Monaten
  2. @Ephraim B.: Vielleicht hilft dir dieses Video weiter:
    https://www.sofatutor.com/mathematik/videos/antiproportionale-zuordnungen-erkennen?topic=985
    Viele Grüße aus der Redaktion.

    Von Albrecht Kröner, vor etwa einem Jahr
  3. gut gestaltet aber leider keine indirekte Proportionalität
    :)

    Von Ephraim B., vor etwa einem Jahr
  4. Richtig cool und gut gestaltet find ich auch

    Von Sebi R., vor etwa einem Jahr
  5. Gut gestaltet

    Von Memolu1978, vor mehr als einem Jahr
Mehr Kommentare

Direkte Proportionalität Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Direkte Proportionalität kannst du es wiederholen und üben.

  • Gib jeweils den zutreffenden Proportionalitätsfaktor $k$ an.

    Tipps

    Wenn du die gegeben Werte für $x$ und $y$ in die Gleichung $y=k\cdot x$ einsetzt, dann kannst du diese nach $k$ umstellen.

    Schau dir folgendes Beispiel an:

    $x=50$ und $y=100$

    Somit ergibt sich folgende Rechnung für den Proportionalitätsfaktor $k$:

    $ \begin{array}{rcl} 100 &=& k\cdot 50 & \vert :50 \\ 2 &=& k & \end{array} $

    Lösung

    Folgende Spielergebnisse sind uns bekannt:

    Spiel 1: Gewichtheben

    • Stärkules: $y=3000\ \text{kg}$
    • Pumpi: $x=2\ \text{kg}$
    Spiel 2: Hochsprung

    • Arnie: $y=6\ \text{m}$
    • Pumpi: $x=1\ \text{m}$
    Außerdem wissen wir, dass es sich dabei um zwei Unentschieden handelt. Also muss zwischen diesen Werten eine direkte Proportionalität vorliegen. Wir setzen die Werte in die Gleichung $y=k\cdot x$ ein und rechnen:

    Spiel 1: Gewichtheben

    $ \begin{array}{rcll} 3000 &=& k\cdot 2 & \vert :2 \\ 1500 &=& k & \end{array} $

    Spiel 2: Hochsprung

    $ \begin{array}{rcll} 6 &=& k\cdot 1 & \vert :1 \\ 6 &=& k & \end{array} $

  • Beschreibe die direkte Proportionalität.

    Tipps

    Eine Ursprungsgerade ist eine Gerade, die den Punkt $P(0\ \vert\ 0)$ durchläuft.

    Die Abbildung zeigt den Graphen der folgenden direkten Proportionalität:

    $y=1\cdot x$

    Die allgemeine Gleichung einer Ursprungsgeraden lautet:

    $y=mx$

    Dabei ist $m$ die Steigung.

    Lösung

    Nun gehen wir die einzelnen Punkte zusammen durch:

    Bei der direkten Proportionalität stehen zwei Größen in einem festen Verhältnis zueinander.

    Die direkte Proportionalität zwischen zwei Größen $x$ und $y$ kann man mit der Gleichung $y=k\cdot x$ darstellen, wobei $k$ der Proportionalitätsfaktor ist.

    • Das bedeutet, dass eine direkte Proportionalität zweier Größen dann vorliegt, wenn die eine Größe aus der Multiplikation der anderen Größe mit immer demselben Faktor resultiert.
    Sind Größen direkt proportional, dann verändern sich beide Größen in gleichem Maße.

    • Das bedeutet z.B.: Halbiert man die erste Größe, so halbiert sich auch die zweite Größe.
    Der Proportionalitätsfaktor $k$ zweier direkt proportionaler Größen ändert sich nie.

    • Das bedeutet: Selbst wenn sich die erste und zweite Größe ändern, so stehen sie immer noch in demselben Verhältnis zueinander. Da der Proportionalitätsfaktor $k$ genau dieses Verhältnis beschreibt, bleibt dieser somit immer konstant.
    Der Graph direkt proportionaler Größen ist immer eine Ursprungsgerade, wobei die Steigung $m$ dem Proportionalitätsfaktor $k$ entspricht. Dies ist konsequent: Wenn eine Größe $0$ ist, muss die andere mit $k$ multipliziert auch $0$ sein.

    • Die allgemeine Gleichung für eine Ursprungsgerade lautet $y=mx$. Eine direkte Proportionalität beschreiben wir mit $y=kx$. Somit handelt es sich bei einer direkten Proportionalität um Ursprungsgeraden, wobei der Proportionalitätsfaktor $k$ der Geradensteigung $m$ entspricht.
  • Berechne den Proportionalitätsfaktor $k$.

    Tipps

    Es handelt sich bei der gegeben Tabelle um Werte mit direkter Proportionalität. Das heißt, dass jedes Wertepaar denselben Proportionalitätsfaktor $k$ liefert.

    Du kannst also selbst wählen, mit welchem Wertepaar du rechnen möchtest.

    Mit dem berechneten Proportionalitätsfaktor $k$ kannst du bestimmen, ob Stärkules oder Arnie vorne liegt.

    Dafür setzt du die Leistung von einem der beiden in die Gleichung $y=k\cdot x$ ein und berechnest die andere Variable. Ist der berechnete Wert größer als die angegebene Leistung, hat dieser Sportler verloren. Doch ist der Wert kleiner, so hat er gewonnen. Falls der berechnete Wert der gegebenen Leistung entspricht, so liegt wieder einmal ein Gleichstand vor.

    Lösung

    Gegeben ist folgende Tabelle vom interstellaren Komitee für Gewichte und Maßeinheiten:

    $ \begin{array}{l|l|l|l|l} x & 3 & 4 & 5 & 6 \\ \hline y & 150 & 200 & 250 & 300 \end{array} $

    Um den Proportionalitätsfaktor $k$ ausgehend von der Gleichung $y=k\cdot x$ zu bestimmen, setzen wir ein Wertepaar aus der Tabelle in die Gleichung ein und lösen diese nach dem Proportionalitätsfaktor auf:

    $ \begin{array}{lcrl} 150 &=& k\cdot 3 & \vert :3 \\ 50 &=& k & \end{array} $

    Nun setzen wir die Leistung von Stärkules vom Planeten Adonis in die Gleichung $y=50x$ ein, sodass wir berechnen können, welcher Leistung diese auf dem Planeten Muskolon entsprechen würde. Da $y$ den Leistungen auf dem Planeten Adonis entspricht, setzen wir Stärkules Leistung in $y$ ein. Wir erhalten:

    $ \begin{array}{lcrl} 100 &=& 50\cdot x & \vert :50 \\ 2 &=& x & \end{array} $

    Dies entspricht genau der Leistung von Arnie. Somit ist wieder einmal ein Gleichstand gegeben.

  • Bestimme die gesuchte Größe mithilfe des Proportionalitätsfaktors $k$.

    Tipps

    Berechne zunächst ausgehend von der Gleichung $y=k\cdot x$ den Proportionalitätsfaktor $k$ zwischen den beiden direkt proportionalen Größen.

    Wenn du den Proportionalitätsfaktor $k$ ermittelt hast, kannst du in deine Gleichung die gegebene Größe einsetzen und somit die gesuchte Größe berechnen. Achte dabei darauf, dass du bei der Wahl deiner Variablen $x$ und $y$ einheitlich bleibst.

    Lösung

    Nun schauen wir uns beide Beispiele gemeinsam an. Wir bestimmen für beide zunächst den Proportionalitätsfaktor $k$ und nutzen diesen, um die gesuchte Größe zu berechnen.

    Beispiel 1

    Marius fährt mit seinem neuen Auto maximal $140\ \frac{\text{km}}{\text{h}}$ und kann in $3$ Stunden $420\ \text{km}$ zurücklegen.

    • $x=3$ Stunden entsprechen $y=420$ Kilometern
    Für den Proportionalitätsfaktor $k$ folgt dann:

    $ \begin{array}{llll} 420 &=& k\cdot 3 & \vert :3 \\ 140 &=& k & \end{array} $

    Eingesetzt ergibt das:

    $ \begin{array}{lll} y &=& 140\cdot 10 \\ y &=& 1400\ \end{array} $

    Demnach schafft Marius in $10$ Stunden $1400\ \text{km}$

    Beispiel 2

    Aileen kauft für ihre Geburtstagsfeier $15$ Donuts. Sie zahlt an der Kasse $37,50\ €$. Jedoch ist sie später unsicher, ob $15$ Donuts ausreichen und holt zur Sicherheit nochmal $10$.

    • $x=15$ Donuts entsprechen $y=37,50$ Euro
    Für den Proportionalitätsfaktor $k$ folgt dann:

    $ \begin{array}{llll} 37,5 &=& k\cdot 15 & \vert :15 \\ 2,5 &=& k & \end{array} $

    Eingesetzt ergibt das:

    $ \begin{array}{lll} y &=& 2,5\cdot 10 \\ y &=& 25\ \end{array} $

    Demnach zahlt Aileen beim zweiten Kauf für $10$ Donuts $25$ Euro.

  • Entscheide jeweils, ob direkte Proportionalität vorliegt.

    Tipps

    Zwei Größen sind dann direkt proportional zueinander, wenn sie sich im gleichen Maße abhängig voneinander verändern.

    Das bedeutet beispielsweise, dass das Halbieren der ersten Größe das Halbieren der zweiten Größe verursacht.

    Hier ein Beispiel zu einer nicht direkt proportionalen Zuordnung:

    Die Busfahrt für einen Ausflug kostet $300\ €$.

    Wenn $50$ Schüler an dem Ausflug teilnehmen, zahlt jeder Schüler $6\ \text{€}$ für die Busfahrt. Nehmen nur $25$ Schüler teil, so zahlt jeder Schüler $12\ \text{€}$.

    Es gilt: Halbiert man die Schüleranzahl, so verdoppeln sich die Busfahrtkosten pro Schüler.

    Lösung

    Schauen wir uns die gegebenen Größen an und bewerten jeweils, ob es sich um direkt zueinander proportionale Größen handelt.

    gefahrene Strecke und Kraftstoffverbrauch

    Wir wissen, dass ein Auto zum Vorankommen Kraftstoff benötigt. Je mehr Strecke wir fahren, desto mehr verbraucht das Auto Kraftstoff. Nehmen wir an, dass ein Auto $7$ Liter Kraftstoff pro $100$ Kilometer verbraucht. So verbraucht das Auto für eine Strecke von $200$ Kilometern $14$ Liter Kraftstoff. Somit liegt zwischen diesen beiden Größen eine direkte Proportionalität vor.

    Anzahl der Wasserschläuche und Füllzeit eines Beckens

    Wenn das Füllen eines Beckens zu lange dauert, würde man sich mit der Erhöhung der Anzahl der Wasserschläuche weiterhelfen. Je mehr Wasserschläuche einem zur Verfügung stehen, desto schneller ist ein Becken gefüllt. Wir sehen also, wenn sich die Anzahl der Wasserschläuche erhöht, nimmt die Füllzeit ab. Somit liegt keine direkte Proportionalität vor.

    Fahrtgeschwindigkeit und Fahrtdauer

    Eine Fahrt dauert weniger lange, wenn man schneller fährt. Somit bewirkt das Erhöhen der Geschwindigkeit die Abnahme der Fahrtdauer. Wenn wir doppelt so schnell fahren, halbiert sich unsere Fahrtdauer. Also liegt keine direkte Proportionalität vor.

    Fahrtgeschwindigkeit und gefahrene Strecke pro Zeiteinheit

    Je schneller ein Auto fährt, desto mehr Strecke legt es pro Zeiteinheit zurück. Während ein Auto mit einer Geschwindigkeit von $50\ \frac{\text{km}}{\text{h}}$ in zwei Stunden $100\ \text{km}$ zurücklegt, legt es mit einer doppelt so großen Geschwindigkeit, also $100\ \frac{\text{km}}{\text{h}}$, in zwei Stunden $200\ \text{km}$ zurück. Wir sehen, dass eine Verdopplung der Geschwindigkeit eine Verdopplung der zurückgelegten Strecke verursacht. Hier liegt also eine direkte Proportionalität vor.

  • Ermittle die fehlenden Werte in der Tabelle.

    Tipps

    Ermittle zunächst ausgehend von der Gleichung $y=k\cdot x$ den Proportionalitätsfaktor $k$. Dabei kannst du frei wählen, für welche Größe (Arbeitszeit oder Arbeitslohn) die Variablen $x$ und $y$ stehen sollen. Du musst nur darauf achten, dass du bei deinen Berechnungen einheitlich bleibst.

    Wenn du den Proportionalitätsfaktor $k$ bestimmt hast, kannst du in die Gleichung $y=k\cdot x$ den jeweils gegebenen Tabellenwert einsetzen und den fehlenden berechnen.

    Lösung

    Bei den Größen Arbeitszeit und Arbeitslohn handelt es sich um direkt proportionale Größen. Somit können wir einen Proportionalitätsfaktor $k$ bestimmen, mit welchem jedes weitere Wertepaar in der Tabelle bestimmt werden kann.

    Folgendes ist uns bekannt:

    • Der Arbeitslohn für $60$ Arbeitsstunden beträgt $660\ €$.
    Nehmen wir folgendes an:

    • Die Variable $x$ steht für die Arbeitszeit in Stunden.
    • Die Variable $y$ steht für den Arbeitslohn in €.
    Wir berechnen zunächst den Proportionalitätsfaktor $k$ mit der Gleichung $y=k\cdot x$:

    $ \begin{array}{rcll} 660 &=& k\cdot 60 & \vert :60 \\ 11 &=& k & \\ \end{array} $

    Somit haben wir den Proportionalitätsfaktor $k=11$ berechnet und können die Tabelle ausfüllen. Dafür setzen wir die Werte, die in der Tabelle gegeben sind, in unsere Gleichung $y=11\cdot x$ ein und bestimmen die fehlende Größe. Dabei müssen wir beachten, dass wir die Werte für den Arbeitslohn in $y$ und die Werte für die Arbeitszeit in $x$ einsetzen, da wir dies so festgelegt haben.

    Hinweis: Hätten wir die Variablen genau andersherum gewählt, hätten wir für $k$ einen anderen Proportionalitätsfaktor erhalten. Nämlich genau den Kehrwert $\frac{1}{11}$. Auch diesen kann man für die Berechnung verwenden. Es ist nur wichtig, dass man bei der gesamten Rechnung immer einheitlich bleibt.

    Die Rechnung soll mit den ersten beiden Werten verdeutlicht werden.

    Gegeben sind $20$ Arbeitsstunden. Wir setzen die $20$ in die Variable $x$ ein und erhalten:

    $ \begin{array}{lll} y &=& 11\cdot 20 \\ y &=& 220 & \\ \end{array} $

    Gegeben ist ein Arbeitslohn von $1650\ €$. Wir setzen die $1650$ in die Variable $y$ ein und erhalten:

    $ \begin{array}{llll} 1650 &=& 11\cdot x & \vert :11 \\ 150 &=& x & \\ \end{array} $

    Auf diese Weise kannst du jeden Wert in der Tabelle bestimmen. Die vollständig ausgefüllte Tabelle sieht dann wie folgt aus:

    $ \begin{array}{c|c} \text{Arbeitszeit [h]} & \text{Arbeitslohn [€]} \\ 20 & 220 \\ 150 & 1650 \\ 350 & 3850 \\ 10 & 110 \\ \end{array} $