Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Funktionen grafisch darstellen

Erfahre, wie Funktionsgraphen erstellt werden. Durch Verwendung einer Wertetabelle und das Eintragen von Punkten in ein Koordinatensystem entsteht der Graph einer Funktion. Untersuche außerdem, wie man feststellen kann, ob ein gegebener Graph ein Funktionsgraph ist. Neugierig? Diese und viele weitere Informationen findest du im folgenden Text.

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.4 / 107 Bewertungen
Die Autor*innen
Avatar
Team Digital
Funktionen grafisch darstellen
lernst du in der 7. Klasse - 8. Klasse

Funktionen grafisch darstellen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Funktionen grafisch darstellen kannst du es wiederholen und üben.
  • Bestimme, ob der Weg des Meteoriten zu einer Funktion gehört.

    Tipps

    Sowohl $f(x)=2x+8$ als auch $f(x)=8x+2$ sind Funktionen.

    Eine lineare Funktion ist gegeben durch die Gleichung

    $y=mx+n$,

    wobei $m$ die Steigung und $n$ der $y$-Achsenabschnitt ist.

    Jede Funktion ist eine Zuordnung. Aber nicht jede Zuordnung ist auch eine Funktion.

    Lösung

    Funktionen sind besondere Beziehungen zwischen Variablen. Man nennt so eine Beziehung auch „Zuordnung“. Doch umgekehrt ist nicht jede Zuordnung eine Funktion. Das ist nur der Fall, wenn folgende Bedingung erfüllt ist:

    Jedem $\mathbf{x}$-Wert wird genau ein $\mathbf{y}$-Wert zugeordnet.

    Zum Beispiel ist $f(x)=2x+8$ mit der Steigung $m=2$ und dem $y$-Achsenabschnitt $n=8$ eine Funktion. Der zugehörige Graph ist eine Gerade.

    Wie kann man an einem Graphen erkennen, ob er eine Funktion darstellt?

    Du zeichnest einige senkrechte Linien parallel zur $y$-Achse ein. Jede dieser Linien darf den Graphen nur einmal schneiden. Wenn das der Fall ist, gehört der Graph zu einer Funktion.

  • Gib an, welches Sternenbild der Graph einer Funktion ist.

    Tipps

    Funktionen sind spezielle Beziehungen zwischen Variablen:

    Zu jedem $\mathbf{x}$-Wert gehört genau ein $\mathbf{y}$-Wert.

    Du kannst einen Test mit senkrechten Linien parallel zur $y$-Achse durchführen. Jede der Linien darf den Graphen nur einmal schneiden, dann gehört der Graph zu einer Funktion. Bei mehr als einem Schnittpunkt pro Linie stellt der Graph keine Funktion dar.

    Lösung

    Wenn man bei einem gegebenen Graphen prüfen will, ob er zu einer Funktion gehört, kann man dies mit senkrechten Linien tun.

    Jede dieser Linien darf den Graphen nur einmal schneiden.

    Hier siehst du den Graphen zu $x^2+y^2=16$. Dieser hat die Form eines Kreises.

    Wie du siehst, haben einige der senkrechten Linien zwei gemeinsame Punkte mit dem Graphen. Daraus kannst du folgern, dass $x^2+y^2=16$ keine Funktion ist.

    Der Graph der liegenden Parabel (Bild F) ist kein Graph einer Funktion.

    Alle übrigen Graphen gehören zu Funktionen. Sie „bestehen“ den Test mit den senkrechten Linien.

  • Vervollständige die Wertetabelle der Funktion $y=2x^2+3$.

    Tipps

    Berechne zu jedem $x$-Wert den $y$-Wert durch Einsetzen von $x$ in die Funktionsgleichung.

    Schau dir dies zum Beispiel für $x=4$ an.

    Achte auf das Vorzeichen: Das Quadrat einer negativen Zahl ist positiv.

    $(-2)^2=(-2)\cdot (-2)=4$

    Lösung

    Hier ist der Graph der Funktion $y=2x^2+3$ zu sehen sowie die drei Punkte $(-1|5)$ $(0|3)$ und $(1|5)$, die auf dem Graphen, einer Parabel, liegen.

    Wie kann man diese Punkte bestimmen?

    Das geht zum Beispiel mithilfe einer Wertetabelle. Man setzt dafür die verschiedenen Werte für $x$ aus der linken Spalte in die Funktionsgleichung ein und bestimmt durch Ausrechnen die zugehörigen $y$-Werte. $x$- und $y$-Wert kombiniert, geben uns die Koordinaten des jeweiligen Punktes ($x$|$y$) an, den wir im Koordinatensystem einzeichnen können.

    Für $x=-3$:

    $y=2\cdot(-3)^2+3=2\cdot 9+3=18+3=21$

    Für $x=-2$:

    $y=2\cdot(-2)^2+3=2\cdot 4+3=8+3=11$

    Für $x=-1$:

    $y=2\cdot(-1)^2+3=2\cdot 1+3=2+3=5$

    Für $x=0$:

    $y=2\cdot0^2+3=2\cdot 0+3=0+3=3$

    Für $x=1$:

    $y=2\cdot1^2+3=2\cdot 1+3=2+3=5$

    Für $x=2$:

    $y=2\cdot2^2+3=2\cdot 4+3=8+3=11$

    Für $x=3$:

    $y=2\cdot3^2+3=2\cdot 9+3=18+3=21$

  • Entscheide, welche Sterne zu $f(x)=\frac1{10}\cdot x^2$ gehören.

    Tipps

    Du kannst jeden Stern wie folgt überprüfen:

    • Setze die $x$-Koordinate in der Funktionsgleichung $y=\frac1{10}\cdot x^2$ ein.
    • Ist das Ergebnis die $y$-Koordinate des Sterns, so liegt er auf dem Graphen, ansonsten nicht.

    Schau dir dies am Beispiel $x=0$ an: Einsetzen in die Gleichung führt zu $y=\frac1{10}\cdot (0)^2=0$.

    Das bedeutet, dass der Punkt $(0|0)$ auf dem Graphen liegt.

    Betrachte den Stern $(4|-1)$ (Dieser ist nicht eingezeichnet.).

    Es ist $y=\frac1{10}\cdot (4)^2=1,6\neq-1$.

    Das bedeutet, dass dieser Stern nicht auf dem Graphen liegt.

    Lösung

    Um herauszufinden, ob ein Stern auf dem Graphen liegt, setzen wir die $x$-Koordinate in die Funktionsgleichung $f(x)=\frac1{10}\cdot x^2$ ein.

    Wenn wir als Lösung die $y$-Koordinate des Sterns erhalten, liegt er als Punkt auf dem Funktionsgraphen, also Stephanies Sternbild, ansonsten nicht.

    Hier kannst du die entsprechende Wertetabelle sehen:

    $\begin{array}{c|c|c|c|c|c|c|c|c|c|c} x&-10&-9&-8&-7&-6&-5&-4&-3&-2&-1&0\\ y&10&8,1&6,4&4,9&3,6&2,5&1,6&0,9&0,4&0,1&0 \end{array}$

    $\begin{array}{c|c|c|c|c|c|c|c|c|c|c} x&0&1&2&3&4&5&6&7&8&9&10\\ y&0&0,1&0,4&0,9&1,6&2,5&3,6&4,9&6,4&8,1&10 \end{array}$

    Wenn man all diese Punkte in ein Koordinatensystem überträgt, erhält man diese rote Parabel.

    Die zu dem Graphen gehörenden Punkte sind $(0|0)$, $(10|10)$, $(−10|10)$ sowie $(−5|2,5)$.

  • Erkläre, wie du den Graphen der Funktion $y=2x+8$ zeichnest.

    Tipps

    Hier siehst du den Punkt $(3|6)$ in einem x-y-Koordinatensystem.

    Hier siehst du beispielhaft, wie der $y$-Wert zu $x=3$ berechnet werden kann.

    Lösung

    Hier ist der Graph der Funktion $y=2x+8$ zu sehen. Dabei geht man wie folgt vor:

    1. Man zeichnet ein Koordinatensystem mit einer horizontalen (waagerechten) Achse, der $x$-Achse, und einer vertikalen (senkrechten) Achse, der $y$-Achse.
    2. Nun kann der Graph gezeichnet werden: Hierfür wird zunächst die Stelle eingetragen, an der die Gerade die $y$-Achse schneidet. Dies ist der $y$-Achsenabschnitt.
    3. Durch Erstellen einer Wertetabelle erhält man weitere Punkte, die auf dem Graphen der Funktion liegen. Hierfür setzt man verschiedene $x$-Werte in der Funktionsgleichung ein und erhält die zugehörigen $y$-Werte.
    4. Die Punkte werden in das Koordinatensystem eingetragen. Dies kann man sich beispielhaft an dem Punkt $(5|18)$ klarmachen: Es wird eine zur $y$-Achse parallele Gerade durch $x=5$ und eine zur $x$-Achse parallele Gerade durch $y=18$ gezeichnet. Dort, wo die Geraden sich schneiden, liegt der Punkt. Zuletzt werden diese Punkte miteinander verbunden. Alle Punkte liegen auf einer Geraden.
    Übrigens: Der 2. Punkt einer linearen Funktion könnte auch durch Einzeichnen eines Steigungsdreiecks ersetzt werden: Hierfür startet man bei dem $y$-Achsenabschnitt und geht von dort eine Einheit nach rechts. Dann geht man $2$, dies ist die Steigung, Einheiten nach oben. Den so erhaltenen Punkt, $(1|10)$, verbindet man mit dem $y$-Achsenabschnitt.

  • Ermittle zu jedem Graphen die passende Funktionsgleichung.

    Tipps

    Eine Gerade ist der Graph einer linearen Funktion.

    Eine Parabel ist der Graph einer quadratischen Funktion.

    Wenn du den Scheitelpunkt $S(x_s|y_s)$ einer quadratischen Funktion kennst, so ist die Scheitelpunktform gegeben durch:

    $f(x)=a(x-x_s)^2+y_s$

    Lösung

    In dieser Aufgabe werden zwei Geraden und zwei Parabeln behandelt.

    • Eine Gerade gehört zu einer linearen Funktion $y=mx+b$
    • Eine Parabel gehört zu einer quadratischen Funktion $y=ax^2+bx+c$
    Wir beginnen mit den Geraden:
    • Bei beiden ist der y-Achsenabschnitt $5$.
    • Der Unterschied zwischen beiden ist, dass die eine fällt und die andere steigt.
    • Die Steigung kann man durch Bestimmen des Höhen- und Breitenunterschiedes bestimmen.
    • Die linke der beiden Geraden hat einen Höhenunterschied von $-5$ und einen Breitenunterschied von $2$. Die zugehörige Gleichung lautet: $y=-\frac52x+5$.
    • Ebenso kann die Gleichung der rechten der beiden Geraden bestimmt werden: $y=\frac52x+5$.
    Nun kommen wir zu den Parabeln.
    • Beide Parabeln haben einen Scheitelpunkt auf der $y$-Achse.
    • Das bedeutet, dass $b=0$ ist.
    • Bei beiden Parabeln ist $a=1$. Dies erkennt man, wenn man von dem Scheitelpunkt eine Einheit nach rechts und eine nach oben geht und wieder auf der Parabel landet.
    • Der jeweilige Wert für $c$ ist der $y$-Achsenabschnitt.
    • Somit lautet die Gleichung der linken der beiden Parabeln $y=x^2-4$.
    • Die Gleichung der rechten Parabel ist $y=x^2+1$.