Die Raute
Eine Raute ist ein Viereck mit vier gleich langen Seiten. Die gegenüberliegenden Seiten sind parallel, die Diagonalen stehen senkrecht aufeinander und sind Symmetrieachsen. Gegenüberliegende Winkel sind gleich groß und benachbarte Winkel ergeben zusammen 180°. Aber ist jede Raute ein Rechteck? Erfahre mehr im folgenden Video!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Die Raute Übung
-
Bestimme die korrekten Aussagen zu den Eigenschaften einer Raute.
TippsEine Raute ist ein Viereck.
So kann eine Raute aussehen.
LösungDiese Aussagen sind falsch:
„Alle fünf Seiten der Raute sind gleich lang.“
- Es stimmt, dass alle Seiten einer Raute gleich lang sind, allerdings besitzt eine Raute nur vier Seiten.
- Gegenüberliegende Winkel einer Raute sind immer gleich groß.
„Die Summe zweier angrenzender Winkel einer Raute beträgt immer $180^{\circ}$“
„Gegenüberliegende Winkel einer Raute sind immer gleich groß.“
„Die Diagonalen einer Raute sind gleichzeitig die Symmetrieachsen.“
- All dies sind Eigenschaften von Rauten. Du solltest sie dir gut merken.
-
Beschreibe die Eigenschaften einer Raute.
Tipps$\alpha$ und $\beta$ befinden sich in nebeneinanderliegenden Ecken.
Klappst du eine Raute entlang einer der Diagonalen um, dann sind die beiden Hälften deckungsgleich.
LösungSo kannst du den Lückentext vervollständigen:
„Eine Raute ist ein Viereck, bei dem alle Seiten gleich lang sind. Sie wird auch Rhombus genannt.
Nebeneinanderliegende Winkel einer Raute addieren sich zu $180^{\circ}$. Es gilt also beispielsweise:
$\alpha + \beta=180^{\circ}$“
- $\alpha$ und $\beta$ befinden sich in nebeneinanderliegenden Ecken.
$\alpha = \gamma$“
Die Diagonalen einer Raute verlaufen durch gegenüberliegende Ecken und halbieren die jeweiligen Winkel. Sie bilden gleichzeitig die Symmetrieachsen.
- Klappst du eine Raute entlang einer der Diagonalen um, dann sind die beiden Hälften deckungsgleich.
-
Ermittle, welche Bezeichnung der geometrischen Figuren am zutreffendsten ist.
TippsBei einem Parallelogramm sind jeweils gegenüberliegende Seiten parallel.
Zwei gegenüberliegende Seiten eines Trapezes sind parallel.
LösungSo kannst du die Bezeichnungen mit den geometrischen Figuren verbinden.
- Ein Quadrat hat vier gleich lange Seiten und vier rechte Winkel. Die einzige Figur, die diese Voraussetzungen erfüllt, ist die zweite von rechts.
- Bei einem Parallelogramm sind jeweils gegenüberliegende Seiten parallel. Die Seiten müssen jedoch nicht alle gleich lang sein. Also ist es die zweite Figur von links.
- Zwei gegenüberliegende Seiten eines Trapezes sind parallel. Die Figur ganz rechts entspricht dieser Beschreibung am besten.
- Eine Raute ist ein Viereck mit vier gleich langen Seiten. Jeweils gegenüberliegende Seiten sind parallel und gegenüberliegende Winkel gleich groß. Die Figur ganz links entspricht dieser Definition.
-
Erschließe die fehlenden Winkel der Rauten.
TippsGegenüberliegende Winkel einer Raute sind gleich.
Nebeneinanderliegende Winkel einer Raute addieren sich zu $180^{\circ}$.
LösungMit diesen Informationen kannst du die Lücken füllen:
Gegenüberliegende Winkel einer Raute sind immer gleich groß.
Nebeneinanderliegende Winkel einer Raute addieren sich zu $180^{\circ}$.
Damit erhalten wir für die erste Raute:
- Der gegenüberliegende Winkel von $\alpha$ ist $\gamma$. Also gilt: $\gamma=100^{\circ}$
- Der gegenüberliegende Winkel von $\beta$ ist $\delta$. Also gilt: $\delta=80^{\circ}$
Der Winkel $\beta$ liegt neben $\alpha$. Also gilt:
$\alpha+\beta=180^{\circ}$. Mit $\alpha=60^{\circ}$ erhalten wir:
- $\beta=120^{\circ}$
- $\gamma=60^{\circ}$ und $\delta=120^{\circ}$
Der Winkel $\gamma$ liegt neben $\delta$. Also gilt:
$\gamma+\delta=180^{\circ}$. Mit $\delta=105^{\circ}$ erhalten wir:
- $\gamma=75^{\circ}$
-
Gib an, welche geometrischen Figuren ebenfalls Rauten sind.
TippsEine Raute ist ein Viereck mit vier gleich langen Seiten. Jeweils gegenüberliegende Seiten sind parallel und gegenüberliegende Winkel gleich groß
Überlege dir, welche der angegebenen Figuren diese Eigenschaften erfüllen.
LösungEine Raute ist ein Viereck mit vier gleich langen Seiten. Jeweils gegenüberliegende Seiten sind parallel und gegenüberliegende Winkel gleich groß. Überlege dir, welche dieser Figuren diese Eigenschaften erfüllen.
Dann erhältst du, dass diese Figuren ebenfalls Rauten sind:
„Rhombus“
- Das ist einfach ein anderer Name für eine Raute.
- Diese Figur erfüllt alle Voraussetzungen für eine Raute.
- Diese Figur erfüllt alle Voraussetzungen für eine Raute. Zusätzlich sind alle Winkel rechte Winkel.
„Trapez“
- Hier sind nicht alle gegenüberliegenden Seiten parallel. Eine Raute ist zwar ein Trapez, aber ein Trapez ist nicht automatisch auch eine Raute.
- Ein Kreis ist kein Viereck.
-
Erschließe den Flächeninhalt der Raute.
TippsUm den Flächeninhalt einer Raute zu berechnen, musst du die Flächeninhaltsformel für das Dreieck mal $4$ nehmen und anschließend die Längen der Diagonalen in die Formel des Flächeninhalts einsetzen.
Die Raute besteht aus vier gleich großen Dreiecken. Somit lautet die Flächeninhaltsformel für die Raute:
$A= \frac12 \cdot \frac{e~\cdot~f}{4} \cdot 4$
$A = \frac12 \cdot e \cdot f$
Für die erste Raute erhältst du also:
$A= \frac{1}{2} e \cdot f= \frac{1}{2} \cdot 3,\!5~\text{cm} \cdot 4~\text{cm} = \dots$
LösungDie Raute wird durch die Diagonalen in vier gleich große Dreiecke unterteilt. Die Katheten der Dreiecke entsprechen jeweils der Hälfte der Diagonalen. Der Flächeninhalt eines dieser Dreiecke ist somit
$A=\frac12 \cdot \frac{e}{2} \cdot \frac{f}{2} = \frac12 \cdot \frac{e~\cdot~f}{4}$
Da die Raute aus vier solcher Dreiecke besteht, ist ihr Flächeninhalt:
$A= \frac12 \cdot \frac{e~\cdot~f}{4} \cdot 4$
$A = \frac12 \cdot e \cdot f$
Um den Flächeninhalt einer Raute zu berechnen, musst du die Diagonalen in die Formel des Flächeninhalts einsetzen. Für die erste Raute erhältst du also:
- $A=\frac{1}{2} e \cdot f=\frac{1}{2} \cdot 3,5~\text{cm} \cdot 4~\text{cm} =7~\text{cm}^2$
- $A=\frac{1}{2} e \cdot f=\frac{1}{2} \cdot 3~\text{cm} \cdot 5~\text{cm} =7,5~\text{cm}^2$
8.876
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.856
Lernvideos
37.641
Übungen
33.758
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel