30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Flächeninhalt und Umfang des Parallelogramms 04:32 min

Textversion des Videos

Transkript Flächeninhalt und Umfang des Parallelogramms

Pascal baut sich ein Haus und ist kurz vor der Fertigstellung. Da er die Form eines Parallelogramms besitzt, muss natürlich auch sein Haus in dieser Form sein. Nun fehlt ihm nur noch die Eingangstür und auch die soll die Form eines Parallelogramms haben. Um diese richtig einzubauen, muss Pascal den Umfang und Flächeninhalt von Parallelogrammen berechnen. Wiederholen wir dazu doch zunächst einmal die wichtigsten Eigenschaften eines Parallelogramms. Ein Parallelogramm ist ein Viereck, bei dem je zwei gegenüberliegende Seiten parallel zueinander sind. Darüber hinaus gilt, dass a und c gleich lang sind und auch b und d gleich lang sind. Für die Tür muss Pascal zunächst den Umfang von Parallelogrammen berechnen können. Der Umfang ist die Summe aller Seitenlängen, U ist also gleich a plus b plus c plus d. Da aber a und c gleich lang sind und auch b und d gleich lang sind, können wir dies noch vereinfachen. Wir setzen für c a ein und für d b und erhalten a plus b plus a plus b. Fassen wir dies zusammen, so erhalten wir 2 mal in Klammern a plus b. Die Tür soll Seitenlängen von a gleich 100 cm und b gleich 120 cm haben. Den Umfang können wir nun berechnen, indem wir diese beiden Werte in die Gleichung einsetzen. Wir erhalten also 2 mal in Klammern 100 cm plus 120 cm. Berechnen wir die Klammer zuerst und multiplizieren dann so erhalten wir einen Umfang von 440 cm. Nun möchte Pascal aber noch den Flächeninhalt der Tür wissen. Für den Flächeninhalt eines Parallelogramms benötigen wir zunächst eine Höhe. Wenn wir die Höhe auf a verwenden, nennen wir sie h_a. Wichtig ist, dass wir beim Einzeichnen der Höhe, darauf achten, dass sie senkrecht auf den beiden Seiten steht. Da die Seiten parallel zueinander sind, können wir die Höhe beliebig wählen. Den Flächeninhalt des Parallelogramms berechnet man dann mit a mal h_a. Aber warum ist das so? Dies können wir geometrisch begründen: Die Höhe hat das Parallelogramm in zwei verschiedene Teile geteilt. Verschieben wir dieses Teil und legen es dann an die andere Seite des Parallelogramms erhalten wir ein Rechteck. Dieses Rechteck hat die Seitenlängen a und h_a, also den Flächeninhalt a mal h_a. Da das entstandene Rechteck flächengleich zu dem ursprünglichen Parallelogramm ist, gilt diese Flächenformel auch für das Parallelogramm. Dies gilt analog für das andere Paar paralleler Seiten und deren zugehörige Höhe. Man kann den Flächeninhalt also ebenfalls durch b mal h_b berechnen. Bestimmen wir nun den Flächeninhalt der Tür mit b gleich 120cm und der Höhe h_b gleich 94,2cm. Setzen wir die beiden Werte in die Formel ein... und rechnen dies aus so erhalten wir einen Flächeninhalt von ca 11.300 Quadratzentimetern. Verwenden wir nun zur Berechnung des Flächeninhalts die Seitenlänge a gleich 100 cm und die zugehörige Höhe. Diese hat eine Länge von 113 cm. Setzen wir dies in die Formel A= a mal h_a ein und rechnen das aus so erhalten wir ebenfalls einen Flächeninhalt von etwa 11.300 Quadratzentimetern. Alles andere wäre ja auch seltsam gewesen. Während Pascal die Tür einbaut, fassen wir zusammen. In einem Parallelogramm ist der Umfang die Summe aller Seitenlängen. Da gegenüberliegende Seiten gleich lang sind, kann man den Umfang also mithilfe von 2 mal in Klammern a plus b berechnen. Den Flächeninhalt eines Parallelogramms berechnet man mit A gleich a mal h_a bzw. A gleich b mal h_b. Und Pascal? Der kann nun endlich in sein neues Haus einziehen… oder auch nicht.

Flächeninhalt und Umfang des Parallelogramms Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Flächeninhalt und Umfang des Parallelogramms kannst du es wiederholen und üben.

  • Beschreibe die Berechnung von Umfang und Flächeninhalt eines Parallelogramms.

    Tipps

    Der Umfang des Parallelogramms ist die Strecke, die du durchläufst, wenn du einmal alle Seiten des Parallelogramms abläufst.

    Bei einem Parallelogramm sind die sich gegenüberliegenden Seiten parallel und gleich lang.

    Die Höhe eines Vierecks mit zwei parallelen Seiten ist der senkrechte Abstand dieser beiden Seiten.

    Lösung

    Ein Parallelogramm ist ein Viereck, bei dem je zwei gegenüber liegende Seiten zueinander parallel sind. Diese Seiten sind dann auch jeweils gleich lang. Die Seiten eines Vierecks bezeichnet man üblicherweise alphabetisch gegen den Uhrzeigersinn mit den Buchstaben $a$, $b$, $c$ und $d$. Bei einem Parallelogramm findest du daher für die Seiten die folgenden Formeln:

    $a=c$ und $b=d$

    Der Umfang des Parallelogramms ist die Summe aller vier Seiten, also:

    $U = a+b+c+d = 2 a + 2b = 2 \cdot (a+b)$

    Der Flächeninhalt eines Parallelogramms ist das Produkt aus einer Seite des Parallelogramms und der zugehörigen Höhe. Jedes Viereck mit zwei parallelen Seiten hat eine Höhe. Diese Höhe steht senkrecht auf diesen sich gegenüberliegenden parallelen Seiten. Die Höhe ist der senkrechte Abstand dieser parallelen Seiten. Bei einem Parallelogramm gibt es zwei Paare zueinander paralleler Seiten, nämlich $a$ und $c$ sowie $b$ und $d$. Zur Berechnung des Flächeninhalts kannst du jede Seite und die zugehörige Höhe verwenden.

    Die Höhe zur Seite $a$ bezeichnet man mit $h_a$, die zur Seite $b$ mit $h_b$. Da die Seiten $a$ und $c$ sowie $b$ und $d$ parallel und gleich lang sind, ist auch $h_a=h_c$ und $h_b = h_d$. Die Höhe $h_b$ steht senkrecht auf den Seiten $b$ und $d$, die Höhe $h_a$ steht senkrecht auf $a$ und $c$.

    Für den Flächeninhalt des Parallelogramms gelten dann die Formeln:

    $A =a \cdot h_a$ bzw. $A = b \cdot h_b$

    Die Formel für den Flächeninhalt kannst du geometrisch nachprüfen, indem du die Höhe von einer Ecke auf die gegenüberliegende Seite einzeichnest. Dadurch entsteht ein Dreieck. Wenn du dieses Dreieck abschneidest und an der anderen Seite wieder ansetzt, entsteht ein Rechteck, dessen eine Seite die Höhe und die andere die dazu senkrechte Vierecksseite ist.

  • Beschrifte die Bilder.

    Tipps

    Die Seiten eines Vierecks werden alphabetisch gegen den Uhrzeigersinn mit den Buchstaben $a$, $b$ $c$ und $d$ bezeichnet.

    Die Höhe zu einer Seite steht senkrecht auf dieser Seite.

    Der Umfang eines Vierecks setzt sich aus seinen vier Seiten zusammen.

    Lösung
    • Der Umfang eines Parallelogramms ist die Summe seiner vier Seitenlängen.
    • Der Flächeninhalt ist das Maß für die Fläche, die das Parallelogramm ausfüllt.
    • Die Seiten eines Vierecks werden alphabetisch gegen den Uhrzeigersinn mit den Buchstaben $a$, $b$, $c$ und $d$ bezeichnet.
    • Die Höhe zu einer Seite steht senkrecht auf dieser Seite.
    • Die Höhe zur Seite $a$ wird mit $h_a$ bezeichnet, die Höhe zu der Seite $b$ mit $h_b$.
  • Finde die passende Formel.

    Tipps

    Der Umfang eines Vierecks ist die Summe der Seitenlängen.

    Zur Berechnung des Flächeninhalts benötigst du die Höhe $h$ zu einer Seite des Parallelogramms.

    Ein Parallelogramm mit der Seite $a=50~\text{cm}$ und der zugehörigen Höhe $h_a = 40~\text{cm}$ hat den Flächeninhalt $A = a \cdot h_a = 2.000~\text{cm}^2$.

    Lösung

    Der Umfang eines Parallelogramms ist die Summe seiner Seitenlängen. Bezeichnest du die Seiten des Parallelogramms wie üblich alphabetisch gegen den Uhrzeigersinn mit den Buchstaben $a$, $b$, $c$ und $d$, so ist $U = a+b+c+d$. Da bei einem Parallelogramm die Seiten $a$ und $c$ sowie $b$ und $d$ parallel und gleich lang sind, kannst du auch Folgendes schreiben:

    $U = a+b+c+d = 2a + 2b = 2 \cdot (a+b)$

    Ein Parallelogramm mit den Seiten $a = 100~\text{cm}$ und $b = 120~\text{cm}$ hat daher den Umfang:

    $U = 2 \cdot (a+b) = 2 \cdot (100~\text{cm} + 120~\text{cm}) = 440~\text{cm}$

    Der Flächeninhalt eines Parallelogramms ist das Produkt aus einer Seite und der zugehörigen Höhe. Die Höhe zu der Seite $a$ bezeichnet man mit $h_a$, die zu der Seite $b$ mit $h_b$. Da $a=c$ und $b=d$ gilt, ist auch $h_a = h_c$ und $h_b = h_d$. Die Formeln für den Flächeninhalt sind daher:

    $A = a \cdot h_a$ bzw. $A = b \cdot h_b$

    Ein Parallelogramm mit der Seite $b = 120~\text{cm}$ und der zugehörigen Höhe $h_b = 94,2~\text{cm}$ hat also den Flächeninhalt:

    $A = b \cdot h_b = 120~\text{cm} \cdot 94,2~\text{cm} \approx 13.000~\text{cm}^2$

  • Prüfe die Aussagen.

    Tipps

    Die Veränderung zwischen den beiden Parallelogrammen im Bild heißt Scherung. Dabei ändert sich der senkrechte Abstand zweier paralleler Seiten nicht.

    Lösung

    Folgende Aussagen sind wahr:

    • „Ist der Flächeninhalt eines Parallelogramms das Produkt zweier Seiten, so ist das Parallelogramm ein Rechteck.“ Der Flächeninhalt ist das Produkt einer Seite und der zugehörigen Höhe. Die Höhe zu der Seite $a$ steht senkrecht auf $a$. Sie ist genau dann gleich lang wie die Seite $b$, wenn $b$ eine Höhe zu $a$ ist, d.h. wenn $b$ auf $a$ senkrecht steht. In diesem Fall ist das Parallelogramm ein Rechteck. Andernfalls ist $h_a$ kürzer als $b$.
    • „Der Flächeninhalt eines Parallelogramms ändert sich bei einer Scherung nicht.“ Eine Scherung ist eine Verschiebung zweier gegenüberliegender Seiten eines Parallelogramms. Dabei bleiben der Abstand und die Länge der beiden anderen Seiten gleich. Der senkrechte Abstand dieser beiden Seiten ist die zugehörige Höhe. Bei einer Scherung der Seiten $b$ und $d$ ändern sich also die Seiten $a$ und $c$ und die Höhe $h_a$ nicht. Der Flächeninhalt $A = a \cdot h_a$ bleibt daher unverändert.
    • „Ein Parallelogramm mit einer Seite $a$ und dem Flächeninhalt $a^2$ und dem Umfang $4a$ ist ein Quadrat.“ Der Flächeninhalt ist $A = a \cdot h_a$. Ist aber $A = a^2$, so muss also $h_a = a$ sein. Die Höhe $h_a$ ist aber mindestens so lang wie die Seite $b$, d.h. $h_a \leq b$. Ist aber $U = 2\cdot (a+b) = 4a$, so muss $a=b$ sein. Daher ist dann auch $h_a = b$. Dies bedeutet, dass die Seite $b$ eine Höhe zu $a$ ist, also auf $a$ senkrecht steht. Das Parallelogramm ist demnach ein Rechteck. Das einzige Rechteck mit vier gleich langen Seiten ist das Quadrat.
    • „Der Flächeninhalt eines Rechtecks ist größer als der eines nicht rechteckigen Parallelogramms mit denselben Seitenlängen.“ Die Höhe $h_a$ eines Parallelogramms ist höchstens so lang wie die Seite $b$, auf der $h_a$ nicht senkrecht steht, also $h_a \leq b$. Der Flächeninhalt eines Parallelogramms mit den Seiten $a$ und $b$ ist $A = a \cdot h_a \leq a \cdot b$. Auf der rechten Seite der Ungleichung steht der Flächeninhalt des Rechtecks mit den Seiten $a$ und $b$.
    Folgende Aussagen sind falsch:

    • „Der Umfang eines Parallelogramms ändert sich bei einer Scherung nicht.“ Die Scherung der Seiten $b$ und $d$ ändert die Länge dieser Seiten. Die Länge der Seiten $a$ und $c$ bleibt aber erhalten. Daher ändert sich der Umfang bei einer Scherung.
    • „Haben zwei Parallelogramme dieselbe Seite $a$ und denselben Flächeninhalt, so sind sie kongruent.“ Den Flächeninhalt haben zwei Parallelogramme z.B. dann gemeinsam, wenn sie dieselbe Seite $a$ und Höhe $h_a$ haben. Dazu müssen sie aber nicht kongruent sein, sondern können durch eine Scherung aus einander hervorgehen.
  • Bestimme den Umfang und Flächeninhalt.

    Tipps

    Bei einem Parallelogramm gilt für die Seiten:

    $a = c$ und $b = d$

    Der Flächeninhalt eines Parallelogramms ist das Produkt einer Seite und der zugehörigen Höhe. Es gilt z.B. $A = c \cdot h_a$, denn die Seiten $a$ und $c$ sind gleich lang.

    Ein Parallelogramm mit den Seiten $a=c=6~\text{cm}$ und $b=d=8~\text{cm}$ und den Höhen $h_a = 7~\text{cm}$ und $h_b=5,25~\text{cm}$ hat den Flächeninhalt:

    $A = a \cdot h_a = b \cdot h_b = 6~\text{cm} \cdot 7~\text{cm} = 8~\text{cm} \cdot 5,25~\text{cm} = 42~\text{cm}^2$

    Lösung

    Der Umfang eines Parallelogramms ist die Summe seiner Seitenlängen. Da bei einem Parallelogramm die Seiten $a$ und $c$ sowie $b$ und $d$ jeweils gleich lang sind, gilt:

    $U = a+b+c+d = 2a + 2b = 2 \cdot (a+b)$

    Der Flächeninhalt eines Parallelogramms ist das Produkt einer Seite und der zugehörigen Höhe. Die Höhe zu der Seite $a$ bezeichnet man mit $h_a$, die zu der Seite $b$ mit $h_b$. Da $a=c$ und $b=d$ gilt, kannst du auch die Seite $a$ durch $c$ und $b$ durch $d$ ersetzen, um den Flächeninhalt zu berechnen.

    Für die in der Aufgabe gegebenen Größen erhältst du folgende Zuordnungen:

    $a = 6~\text{cm}$, $b=4~\text{cm}$, $h_b = 3,3~\text{cm}$:

    • $A = 13,2~\text{cm}^2$, denn $4~\text{cm} \cdot 3,3~\text{cm} = 13,2~\text{cm}^2$.
    • $U = 20~\text{cm}$, denn $2 \cdot (6~\text{cm} + 4~\text{cm}) =20~\text{cm}$.
    $c = 4~\text{cm}$, $b=7~\text{cm}$, $h_a = 4,7~\text{cm}$:
    • $A = 18,8~\text{cm}^2$, denn $4~\text{cm} \cdot 4,7~\text{cm} = 18,8~\text{cm}^2$.
    • $U = 22~\text{cm}$, denn $2 \cdot (4~\text{cm} + 7~\text{cm}) = 22~\text{cm}$.
    $d = 8~\text{cm}$, $c=7~\text{cm}$, $h_b = 5,5~\text{cm}$:
    • $A = 44~\text{cm}^2$, denn $8~\text{cm} \cdot 5,5~\text{cm} = 44~\text{cm}^2$.
    • $U = 30~\text{cm}$, denn $2 \cdot (7~\text{cm}+8~\text{cm}) = 30~\text{cm}$.

  • Erschließe die passenden Größen.

    Tipps

    Kennst du den Umfang $U$ und die Seite $b$, so kannst du die Formel

    $U = 2 \cdot (a+b)$

    nach $a$ auflösen, um die Länge der Seite $a$ zu berechnen.

    Ist $h_a=b$, so ist das Parallelogramm ein Rechteck und der Flächeinhalt das Produkt der beiden Seiten.

    Aus der Seite $a$ und dem Umfang $U$ kannst du die Seite $b$ berechnen. Aus dem Flächeninhalt $A$ und der Höhe $h_b$ kannst du ebenfalls die Seite $b$ berechnen und mit dem anderen Egebnis vergleichen.

    Lösung

    Du kannst folgende Formel für die Berechnung des Umfangs verwenden:

    $U = a+b+c+d = 2\cdot (a+b)$

    Den Flächeninhalt berechnest du mit folgender Formel:

    $A = a \cdot h_a = b \cdot h_b$

    Du kannst beide Formeln nach jeder der darin vorkommenden Größen auflösen. Zusammen mit den Gleichungen $a=c$ und $b=d$ kannst du alle hier angegebenen Größen zuordnen:

    • Zu $a = 5~\text{cm}$, $U = 25~\text{cm}$ gehört $h_b = 4~\text{cm}$, $A = 30~\text{cm}^2$. Denn aus dem Umfang und der Seite $a$ kannst du zuerst die Seite $b$ berechnen: $b = \frac{1}{2} \cdot (U-2a) = 7,5~\text{cm}$. Damit erhältst du den Flächeninhalt $A = 4~\text{cm} \cdot 7,5~\text{cm} = 30~\text{cm}^2$.
    • Aus den Angaben $c = 11~\text{cm}$, $U = 41,2~\text{cm}$ kannst du die Seite $b=d$ berechnen: $d = \frac{1}{2} \cdot (U - 2c) = \frac{1}{2} \cdot (41,2~\text{cm} - 22~\text{cm}) = 9,6~\text{cm}$.
    • Die Größen $c = 7~\text{cm}$, $h_c = b = 9~\text{cm}$ liefern den Flächeninhalt $A = 7~\text{cm} \cdot 9~\text{cm} = 63~\text{cm}^2$ und den Umfang $U = 2 \cdot (7~\text{cm} + 9~\text{cm}) = 32~\text{cm}$.
    • Die Seiten $c = 6~\text{cm}$, $d = 6~\text{cm}$ allein lassen keine Berechnung des Flächeninhalts zu, sondern nur des Umfangs $U = 2 \cdot (4~\text{cm} + 6~\text{cm}) = 24~\text{cm}$.