30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Flächeninhalt und Umfang von Rauten und Drachenvierecken

Bewertung

Ø 5.0 / 4 Bewertungen

Die Autor/-innen
Avatar
Team Digital

Flächeninhalt und Umfang von Rauten und Drachenvierecken

lernst du in der 7. Klasse - 8. Klasse

Beschreibung Flächeninhalt und Umfang von Rauten und Drachenvierecken

Nach dem Schauen dieses Videos wirst du in der Lage sein, Umfang und Flächeninhalt von Drachenvierecken zu ermitteln.

Zunächst lernst du, welche Eigenschaften ein Drachenviereck bezüglich seiner Seitenlängen und Symmetrie besitzt. Anschließend erfährst du, dass die Raute und das Quadrat spezielle Drachenvierecke sind. Abschließend lernst du, wie du mit Hilfe der Diagonalen und Seitenlängen den Umfang und Flächeninhalt von Drachenvierecken berechnen kannst.

Lerne etwas über Drachenvierecke, indem du Sebastian dabei hilfst, Ohrringe für seine Freundin auszusuchen.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Drachenviereck, Raute, Quadrat, Seite, Seitenlänge, Symmetrie, Achsensymmetrie, achsensymmetrisch, Diagonale, Symmetrieachse, Winkel, Flächeninhalt und Umfang.

Bevor du dieses Video schaust, solltest du bereits wissen, wie du Umfang und Flächeninhalt von Rechtecken, Quadraten und Dreiecken bestimmst.

Nach diesem Video wirst du darauf vorbereitet sein, die Berechnung des Umfangs und Flächeninhalts für weitere ebene geometrische Figuren zu lernen.

Transkript Flächeninhalt und Umfang von Rauten und Drachenvierecken

Was für schöne Ohrringe! Genau richtig für Sebastians Freundin Matilda. Um die Größe der Schmuckstücke gut miteinander vergleichen zu können, muss Sebastian Flächeninhalt und Umfang von Drachenvierecken und Rauten berechnen können. Schauen wir uns so ein Drachenviereck einmal genauer an: Es besitzt HIER zwei benachbarte, gleich lange Seiten und HIER auch. Jedes Drachenviereck ist ACHSENSYMMETRISCH. Die Symmetrieachse verläuft dabei auf EINER der beiden Diagonalen. Die ANDERE Diagonale wird von dieser in zwei gleich lange Abschnitte geteilt. Beide Diagonalen stehen senkrecht aufeinander. Auch jede RAUTE ist ein Drachenviereck. Eine Raute, auch RHOMBUS genannt, besitzt aber VIER gleich lange Seiten und ZWEI Symmetrieachsen, die entlang beider Diagonalen verlaufen. Die Diagonalen teilen sich hier GEGENSEITIG in je zwei gleich lange Abschnitte. Schließlich ist jedes QUADRAT eine spezielle Raute und damit ein spezielles Drachenviereck. Beim Quadrat gibt es vier rechte Winkel und zwei gleich lange Diagonalen, die sich gegenseitig halbieren. Weil Raute und Quadrat spezielle Drachenvierecke sind, können wir alle Erkenntnisse zu Drachenvierecken auch auf Raute und Quadrat anwenden. Praktisch, oder? Schauen wir uns zunächst diesen schönen Ohrring in der Form eines Drachenvierecks an. DIESE Seiten haben eine Länge von 2,6 cm und DIESE von 7,4 cm. Die KURZE Diagonale ist 4,8 cm lang und die LANGE 8 cm. Wie groß ist der UMFANG? Den berechnen wir wie bei jedem anderen Viereck: Wir addieren alle 4 Seitenlängen. Aber im Drachenviereck gibt es je zwei Paare GLEICH langer Seiten. Man kann den Umfang also auch bestimmen, indem man die verschiedenen Seitenlängen mit 2 multipliziert und dann addiert. Setzen wir die gegebenen Seitenlängen ein, ergibt sich ein Umfang von 20 cm. Um den Flächeninhalt des Drachenvierecks zu bestimmen, drehen wir es zunächst SO auf die Seite. Weil HIER die Symmetrieachse verläuft, sind DIESE BEIDEN Dreiecke kongruent, also AUCH flächengleich. Wir müssen also nur die Fläche für EINES der Dreiecke bestimmen und das Ergebnis mal 2 nehmen. Der Flächeninhalt EINES Dreiecks berechnet sich zu ein Halb mal Grundseite mal Höhe. Für die Fläche des Drachenvierecks müssen wir das also mal 2 nehmen. Die Grundseite ist die Diagonale f. Die Höhe ein halb mal die Diagonale e. Insgesamt ergibt sich für den Flächeninhalt eines Drachenvierecks also die Formel: ein halb mal e mal f. Setzen wir die gegebenen Werte ein, erhalten wir 19,2 Quadratzentimeter. Schauen wir uns nun diesen Ohrring in Form einer Raute an: Die Seitenlängen sind alle gleich lang, nämlich 5,1 cm. Die kurze Diagonale ist 4,8 cm lang und die lange 9 cm. Um den Umfang einer Raute zu ermitteln, können wir also einfach eine Seitenlänge mal 4 nehmen. Setzen wir die gegebenen 5,1 cm in die Formel ein, erhalten wir für den Umfang DIESER Raute... 20,4 cm. Rauten sind spezielle Drachenvierecke. Die Flächenformel für Drachenvierecke gilt also auch für sie. Mit den gegebenen Werten für die Diagonalen erhalten wir 21,6 Quadratzentimeter. Nun noch dieser Ohrring in Form eines Quadrats. Da weißt du vielleicht schon, wie man Umfang und Flächeninhalt bestimmt. Bei 4 gleich langen Seiten ergibt sich der Umfang zu 4 mal Seitenlänge. Der Flächeninhalt ist genau das Quadrat der Seitenlänge. Was aber, wenn wir NUR die Diagonale gegeben haben? Weil auch das Quadrat ein spezielles Drachenviereck ist, können wir die Flächeninhaltsformel auch HIER übernehmen. Weil beim Quadrat auch die Diagonalen GLEICH lang sind, vereinfacht sich die Formel zu ein halb e Quadrat. Dieser quadratische Ohrring hat eine Diagonale der Länge 8 cm. Seine Fläche beträgt also 32 Quadratzentimeter. Fassen wir das noch einmal zusammen. Ein Drachenviereck ist ein Viereck mit zwei Paaren benachbarter gleich langer Seiten. Die Diagonalen stehen senkrecht aufeinander und die eine teilt die andere in der Mitte. Der Umfang ergibt sich aus der Summe der Seitenlängen. Weil je zwei Seitenlängen gleich lang sind, kann man die Formel SO schreiben: 2 mal a plus 2 mal b. Der Flächeninhalt ergibt sich aus der Hälfte des Produkts beider Diagonalen. Die Raute, auch Rhombus genannt, ist ein spezielles Drachenviereck. Sie hat 4 gleich lange Seiten. Daher vereinfacht sich die Umfangsformel zu 4 mal Seitenlänge. Die Flächeninhaltsformel ist dieselbe wie beim Drachenviereck. Das Quadrat ist ebenso ein spezielles Drachenviereck. Auch hier ergibt sich der Umfang zu 4 mal Seitenlänge. Weil ein Quadrat zwei gleich lange Diagonalen besitzt, vereinfacht sich die Formel für den Flächeninhalt aber SO: ein Halb mal Diagonale zum Quadrat Man kann ihn aber auch mit der bekannten Formel über die Seitenlänge a berechnen. Oh, Matilda hat auch ein schönes Geschenk für Sebastian. Wirklich schön!

30 Tage kostenlos testen
Mit Spaß Noten verbessern
Im Vollzugang erhältst du:

10.843

Lernvideos

44.288

Übungen

38.909

Arbeitsblätter

24h

Hilfe von Lehrer/
-innen

running yeti

In allen Fächern und Klassenstufen.

Von Expert/-innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden