30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Haus der Vierecke – Einführung 06:00 min

Textversion des Videos

Transkript Haus der Vierecke – Einführung

Die kleine Clara lebt ein rundum glückliches Leben in einer idyllischen Vorstadt: Auf ihrem Schulweg trifft sie aber jedes Mal auf das berüchtigte Haus der Vierecke. Uh, das sind ja eckige Gesellen dort und sie sind sogar alle Viereckig. Aber davor soll Clara keine Angst mehr haben. Deshalb machen wir mit ihr einen Rundgang durch das Haus der Vierecke. Vom Dach bis zum Keller wohnen in diesem Haus die verschiedenen Typen von Vierecken. Und ganz unten fangen wir unseren Besuch jetzt an. Das allgemeine Viereck im Keller hat nun ja vier Ecken und sonst keine besonderen Eigenschaften. Vielleicht ist es deshalb immer so schlecht gelaunt wir gehen mal besser weiter. Das Trapez hat immerhin schon eine besondere Eigenschaft, nämlich genau ein Paar parallele Seiten, die es natürlich stolz präsentiert. Das Drachenviereck kann keine Parallelen vorzeigen, ist aber trotzdem ziemlich fröhlich: Weil es achsensymmetrisch ist, macht es eine gute Figur. Das Parallelogramm fühlt sich als der ganz große Star: Zwei gegenüberliegende Seiten sind jeweils gleich lang und parallel. Weiter geht's. Moment, Trapez? Da waren wir schon! Ach nein: Dieses Trapez hier ist symmetrisch und hat zwei gleich lange Seiten. So etwas wie ein Bruder vom allgemeinen Trapez. Schon ziemlich weit oben wohnt die Raute sie hat sogar vier gleich lange Seiten. Daher ist sie ein bisschen eingebildet gehen wir mal weiter. Ach, endlich ein alter Bekannter: Beim Rechteck sind alle Winkel rechtwinklig. Das kann das Quadrat genauso von sich sagen, aber noch dazu sind bei ihm auch alle Seiten gleich lang. Manche Eigenschaften haben die Vierecke also gemeinsam, andere nicht. Schauen wir uns das genauer an: Ein Paar parallele Seiten haben fast alle Hausbewohner, außer dem Drachenviereck und dem allgemeinen Viereck bei zwei Paaren paralleler Seiten sind es schon weniger. Ein Paar gleich langer Seiten haben wieder fast alle Vierecke, nur das Trapez und das allgemeine Viereck nicht. Von diesen Vierecken haben fast alle sogar zwei Paare gleich langer Seiten – bis auf das symmetrische Trapez. Hier können wir sehen, wie das Parallelogramm seine Eigenschaften an andere Vierecke weitergibt. Man sagt: Das Parallelogramm vererbt seine Eigenschaften. Jede Eigenschaft eines Parallelogramms ist auch eine Eigenschaft von Raute und Rechteck, die im Haus ein Stockwerk weiter oben wohnen. Diese zwei sind also ebenfalls Parallelogramme. Und jede Eigenschaft des Rechtecks und der Raute hat wiederum das Quadrat, das ganz oben wohnt. Also ist das Quadrat sowohl Rechteck, als auch Raute. Wir merken uns: Gehen wir im Haus der Vierecke ein Stockwerk nach oben, nehmen wir die Eigenschaften der Vierecke mit. Umgekehrt gilt das aber nicht: Das Quadrat hat vier gleich lange Seiten und vier rechte Winkel. Bei den Vierecken im Stockwerk darunter fehlt jeweils eine Eigenschaft: Die Raute hat vier gleich lange Seiten, aber keine vier rechten Winkel. Sie ist also kein Quadrat. Und das Rechteck hat vier rechte Winkel, aber keine vier gleich langen Seiten. Also ist auch das Rechteck kein Quadrat. Schauen wir uns nun die Diagonalen der Vierecke an: Zwei gleich lange Diagonalen hat das symmetrische Trapez. Auf der gleichen Etage wohnt das Parallelogramm, das hat zwei Diagonalen, die sich gegenseitig halbieren. Das Rechteck wohnt über beiden: also hat es zwei gleich lange Diagonalen, die sich gegenseitig halbieren. Und dasselbe gilt dann natürlich auch für das Quadrat. Die Raute wohnt direkt über dem Parallelogramm, aber nicht direkt über dem symmetrischen Trapez: Daher halbieren sich ihre Diagonalen, sie sind aber nicht gleich lang. Genau eine der Diagonalen wird beim Drachenviereck halbiert. Jetzt untersuchen wir die Winkelgrößen im Haus der Vierecke: Ein Paar gegenüberliegender Winkel sind fast überall gleich groß, außer bei den Trapezen und dem allgemeinen Viereck. Vierecke, bei denen je ein Paar benachbarter Winkel gleich groß sind, gibt es allerdings weniger. Und nur bei Rechteck und Quadrat sind alle Winkel gleich groß. Wieder erkennen wir: Eine Eigenschaft wird an Mitbewohner weitergegeben, die im Stockwerk direkt darüber wohnen. Beim Drachenviereck stehen die Diagonalen senkrecht aufeinander – und folglich auch bei der Raute und dem Quadrat. Schließlich untersuchen wir die Vierecke auf Symmetrie. Mindestens eine Symmetrieachse finden wir bei den meisten Vierecken, abgesehen vom allgemeinen Viereck, dem Trapez und dem Parallelogramm. Mindestens zwei Symmetrieachsen besitzen nur die Vierecke der oberen Stockwerke: Raute, Rechteck und Quadrat. Das Quadrat ist auch hier wieder etwas Besonderes: Es besitzt gleich vier Symmeterieachsen. Und welche Vierecke sind Punktsymmetrisch? Neben den Vierecken der oberen Stockwerke auch das Parallelogramm. Wir fassen zusammen: Im Haus der Vierecke sind alle Typen von Vierecken nach ihren Gemeinsamkeiten angeordnet. Die Eigenschaften werden 'von unten nach oben' vererbt. Im Keller wohnt also das am wenigsten spezielle Viereck: nämlich das allgemeine Viereck. Direkt unter dem Dach wohnt das Viereck, mit allen Spezialeigenschaften: Das Quadrat. Jetzt haben wir alle Eigenheiten dieser eckigen Gestalten kennengelernt. Und selbst Clara hat sich mit ihnen allen angefreundet.