Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Flächeninhalt von aus Rechtecken zusammengesetzten Figuren

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 147 Bewertungen
Die Autor*innen
Avatar
Team Digital
Flächeninhalt von aus Rechtecken zusammengesetzten Figuren
lernst du in der 5. Klasse - 6. Klasse

Flächeninhalt von aus Rechtecken zusammengesetzten Figuren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Flächeninhalt von aus Rechtecken zusammengesetzten Figuren kannst du es wiederholen und üben.
  • Tipps

    Bei der Berechnung von Flächeninhalten musst du immer die Einheiten der Längen beachten.

    Lösung

    Den Flächeninhalt von aus Rechtecken zusammengesetzten Figuren können wir Schritt für Schritt berechnen:

    • Zunächst müssen wir erkennen, wie wir die Gesamtfläche in kleinere Rechtecke zerlegen können. Dabei sind meistens verschiedene Zerlegungen möglich.
    • Anschließend müssen wir manchmal unbekannte Seitenlängen erst selbst ermitteln und immer auf die Längeneinheiten achten.
    • Wenn wir alle Seitenlängen kennen, berechnen wir die Flächeninhalte der einzelnen Rechtecke nacheinander mit der Formel $A = a \cdot b$.
    • Im letzten Schritt können wir dann die berechneten Teilflächen addieren und erhalten so den Flächeninhalt der Gesamtfläche.
  • Tipps

    Berechne zunächst die fehlenden Seitenlängen der Teilflächen $A_2$ und $A_3$.

    Zum Beispiel hat $A_2$ die Länge $1~\text{m} = 100~\text{cm}$ und die Breite $50~\text{cm} + 30~\text{cm}$.

    Lösung

    Den Flächeninhalt eines Rechtecks berechnen wir, indem wir die Seitenlängen miteinander multiplizieren.

    Hier können wir die Seitenlängen von $A_1$ direkt ablesen. Für $A_2$ und $A_3$ müssen wir jeweils noch eine Seitenlänge bestimmen:

    $A_1 = 75~\text{cm} \cdot 25~\text{cm}$

    $A_2$ hat die Länge $1~\text{m} = 100~\text{cm}$ und die Breite $50~\text{cm} + 30~\text{cm} = 80~\text{cm}$. Daher ergibt sich für $A_2$:

    $A_2 = 100~\text{cm} \cdot 80~\text{cm}$

    $A_3$ hat die Länge $2,5~\text{cm} - 1~\text{m} - 75~\text{cm} = 250~\text{cm} - 100~\text{cm} - 75~\text{cm} = 75~\text{cm}$ und die Breite $50~\text{cm}$. Deshalb ergibt sich für $A_3$:

    $A_3 = 75~\text{cm} \cdot 50~\text{cm}$

    Die Gesamtfläche $A_{ges}$ erhalten wir, wenn wir die drei Teilflächen addieren:

    $A_{ges} = A_1 + A_2 + A_3$

  • Tipps

    Der Flächeninhalt muss größer sein als jede einzelne Teilfläche und kleiner als ein Rechteck, das die ganze Figur umgibt.

    Für die Einheit bei der Rechnung ist es meistens sinnvoll, eine der Einheiten aus der Angabe zu wählen.

    Lösung

    Folgende Aussagen sind richtig:

    • Es ist sinnvoll, den Flächeninhalt in der Einheit $\text{cm}^2$ oder $\text{m}^2$ zu berechnen.
    Für die Einheit bei der Rechnung ist es sinnvoll, alle Seitenlängen in dieselbe Einheit umzurechnen, hier also $\text{cm}$ oder $\text{m}$.
    • Der Flächeninhalt ist größer als $1~\text{m}^2$.
    Eine mögliche Teilfläche ist ein Rechteck unten links mit den Seitenlängen $1,2~\text{m}$ und $1,1~\text{m}$. Dieses Rechteck hat bereits eine Fläche größer als $1~\text{m}^2$. Daher muss die Gesamtfläche ebenfalls größer sein.
    • Der Flächeninhalt ist kleiner als $6~\text{m}^2$.
    Die gesamte Figur hat eine Länge von $1,2~\text{m} + 1,8~\text{m} = 3~\text{m}$ und eine Breite von $1,1~\text{m} + 30~\text{cm} = 1,4~\text{m}$. Die Fläche eines Rechtecks, das die ganze Figur umgibt, wäre also $3~\text{m} \cdot 1,4~\text{m}$ und somit kleiner als $6~\text{m}^2$. Deshalb muss auch der Flächeninhalt der Figur unter diesem Wert liegen.

    Folgende Aussagen sind falsch:

    • Es gibt genau eine mögliche Zerlegung der Fläche in drei kleinere Rechtecke.
    Meistens gibt es mehrere Möglichkeiten, die Figur zu unterteilen, hier zum Beispiel entlang der waagerechten oder entlang der senkrechten Linien.
    • Die Fläche kann in drei Quadrate unterteilt werden.
    Bei einer Unterteilung in drei Flächen ergeben sich hier keine drei Quadrate.
    • Der Flächeninhalt ist kleiner als $1~\text{m}^2$.
    Eine mögliche Teilfläche ist ein Rechteck unten links mit den Seitenlängen $1,2~\text{m}$ und $1,1~\text{m}$. Dieses Rechteck allein schon hat eine Fläche größer $1~\text{m}^2$. Darum muss die Gesamtfläche ebenfalls größer sein.

  • Tipps

    Beachte die Einheiten bei der Rechnung.

    Die fehlenden Seitenlängen kannst du durch Addition und Subtraktion der gegebenen Längen berechnen.

    Lösung

    Der Flächeninhalt ergibt sich, indem wir die Figur in Rechtecke zerlegen und den Flächeninhalt der einzelnen Rechtecke bestimmen. Daraus können wir dann die Gesamtfläche $A_{ges}$ ermitteln:

    $A_1 = 1,2~\text{m} \cdot 1,1~\text{m} = 120~\text{cm} \cdot 110~\text{cm} = 13 200~\text{cm}^2$

    $A_2 = 1~\text{m} \cdot (60~\text{cm}+30~\text{cm}) = 100~\text{cm} \cdot 90~\text{cm} = 9 000~\text{cm}^2$

    $A_3 = (1,8~\text{m} - 1~\text{m}) \cdot 30~\text{cm} = 80~\text{cm} \cdot 30~\text{cm} = 2 400~\text{cm}^2$

    $A_{ges} = A_1 + A_2 + A_3 = 13 200~\text{cm}^2 + 9 000~\text{cm}^2 + 2 400~\text{cm}^2 = 24 600~\text{cm}^2 = 2,46~\text{m}^2$

  • Tipps

    Eine zusammengesetzte Fläche kannst du zunächst in Teilflächen aufteilen und zum Schluss wieder zusammenrechnen.

    Um den Flächeninhalt eines Rechtecks zu berechnen, musst du die Seitenlängen des Rechtecks kennen.

    Lösung

    Den Flächeninhalt von aus Rechtecken zusammengesetzten Figuren können wir Schritt für Schritt berechnen:

    • Zunächst müssen wir erkennen, wie wir die Gesamtfläche in kleinere Rechtecke zerlegen können. Dabei gibt es meistens mehrere Zerlegungsoptionen. Wir versuchen, eine Aufteilung zu wählen, bei der die Berechnung der Teilflächen möglichst einfach ist.
    • Anschließend müssen wir manchmal unbekannte Seitenlängen durch Addieren und Subtrahieren ermitteln. Außerdem müssen wir immer auf die Längeneinheiten achten und sie eventuell umrechnen.
    • Wenn wir alle Seitenlängen kennen, berechnen wir die Flächeninhalte der einzelnen Rechtecke nacheinander. Dabei multiplizieren wir jeweils die beiden Seitenlängen, um den Flächeninhalt der rechteckigen Teilflächen zu bestimmen. Dies drückt die Formel $A = a \cdot b$ aus.
    • Im letzten Schritt können wir dann die berechneten Teilflächen addieren und erhalten so den Flächeninhalt der Gesamtfläche.
  • Tipps

    Beachte die Einheiten.

    Du kannst die Fläche hier auch mit einem kleinen Rechteck zu einem großen Rechteck ergänzen. Die Gesamtfläche ergibt sich dann, indem du von dem Flächeninhalt des großen Rechtecks den des kleinen Rechtecks subtrahierst.

    Finde zunächst eine sinnvolle Zerlegung in kleinere Rechtecke.

    Lösung

    Der Flächeninhalt ergibt sich, indem wir die Figur in Rechtecke zerlegen und den Flächeninhalt der einzelnen Rechtecke bestimmen. Daraus können wir dann die Gesamtfläche $A_{ges}$ berechnen.

    Wir betrachten zwei Varianten für die Lösung der Aufgabe. Da die Lösung in $\text{cm}^2$ angegeben werden soll, rechnen wir in $\text{cm}$.

    Variante 1:

    $A_1$ hat die Seitenlängen $2~\text{m} = 200~\text{cm}$ und $1,5~\text{m} = 150~\text{cm}$. Also ergibt sich für $A_1$:

    $A_1 = 200~\text{cm} \cdot 150~\text{cm} = 30 000~\text{cm}^2$

    $A_2$ hat die Seitenlängen $1,4~\text{m} = 140~\text{cm}$ und $80~\text{cm}$. Daraus folgt für $A_2$:

    $A_2 = 140~\text{cm} \cdot 80~\text{cm} = 11 200~\text{cm}^2$

    Hier erhalten wir die gesuchte Fläche $A_{ges}$, indem wir $A_2$ von $A_1$ subtrahieren:

    $A_{ges} = A_1 - A_2 = 30 000~\text{cm}^2 - 11 200~\text{cm}^2 = 18 800~\text{cm}^2$

    Variante 2:

    Eine alternative Zerlegung in drei Teilflächen kann folgendermaßen aussehen:
    Ein Rechteck $A_3$ links, das sich über die Höhe der ganzen Figur erstreckt und rechts bis zum Einschnitt von $A_2$ aus Variante 1 reicht. Die beiden weiteren Rechtecke $A_4$ und $A_5$ entsprechen den beiden Teilflächen über und unter $A_2$ aus Variante 1.
    Dies ist die Berechnung des Flächeninhalts:

    $A_3$ hat die Seitenlängen $2~\text{m} - 1,4~\text{m} = 0,6~\text{m} = 60~\text{cm}$ und $1,5~\text{m} = 150~\text{cm}$. Demnach ergibt sich für $A_3$:

    $A_3 = 60~\text{cm} \cdot 150~\text{cm} = 9 000~\text{cm}^2$

    $A_4$ hat die Seitenlängen $1,4~\text{m} = 140~\text{cm}$ und $15~\text{cm}$. Also folgt für $A_4$:

    $A_4 = 140~\text{cm} \cdot 15~\text{cm} = 2 100~\text{cm}^2$

    $A_5$ hat die Seitenlängen $1,4~\text{m} = 140~\text{cm}$ und $1,5~\text{m} - 15~\text{cm} - 80~\text{cm} = 150~\text{cm} - 15~\text{cm} - 80~\text{cm} = 55~\text{cm}$. Daraus ergibt sich für $A_5$:

    $A_5 = 140~\text{cm} \cdot 55~\text{cm} = 7 700~\text{cm}^2$

    Hier erhalten wir die gesuchte Fläche $A_{ges}$, indem wir die drei Teilflächen $A_3$, $A_4$ und $A_5$ addieren:

    $A_{ges} = A_3 + A_4 + A_5 = 9 000~\text{cm}^2 + 2 100~\text{cm}^2 + 7 700~\text{cm}^2 = 18 800~\text{cm}^2$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.211

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden