Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Parallelogramme zeichnen

Möchtest du lernen, wie man Parallelogramme konstruiert? In diesem Text erfährst du, wie du mit Geodreieck und Lineal Parallelogramme zeichnest. Neugierig? Dann lerne mehr und probiere es selbst aus!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 91 Bewertungen
Die Autor*innen
Avatar
Team Digital
Parallelogramme zeichnen
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Parallelogramme zeichnen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Parallelogramme zeichnen kannst du es wiederholen und üben.
  • Bestimme die korrekten Aussagen über Parallelogramme.

    Tipps

    Du brauchst insgesamt mindestens drei Angaben, um ein Parallelogramm zeichnen zu können.

    Gegenüberliegende Seiten sind je paarweise parallel zueinander.

    Lösung

    Folgende Aussagen sind korrekt:

    • „Sind zwei Seitenlängen und ein Winkel gegeben, so kannst du ein Parallelogramm zeichnen.“
    • „Gegenüberliegende Winkel sind gleich groß und gegenüberliegende Seiten sind gleich lang.“
    • „$\overline{AD}$ ist parallel zu $\overline{BC}$.“

    Folgende Aussagen sind nicht korrekt:

    • „Um ein Parallelogramm zeichnen zu können, müssen mindestens zwei Winkel und eine Seitenlänge gegeben sein.“ $3$ Angaben benötigt man mindestens, um ein Parallelogramm zu zeichnen. Allerdings reicht die Angabe von zwei Winkeln und einer Seite nicht. Sind jedoch zwei Seiten und ein Winkel gegeben, lässt sich das Parallelogramm zeichnen. Insgesamt besteht das Parallelogramm aus zwei verschiedenen Winkeln, die jeweils doppelt vorkommen. Ist nur ein Winkel gegeben, so kann man sich den anderen Winkel herleiten. Somit ergibt die Angabe eines Winkels genug Information. Ist beispielsweise der Winkel $\alpha=70^{\circ}$ gegeben, so kann man sich den anderen Winkel $\beta$ herleiten, indem man wie folgt rechnet:
    $\begin{array}{llll} 360^{\circ}&=& 2\cdot \alpha + 2 \cdot \beta &\vert& - 2\cdot \alpha \\ 2\cdot \beta &=& 360^{\circ} - 2\cdot \alpha &\vert& :2 \\ \beta &=& 180^{\circ} - \alpha && \\ \beta &=& 180^{\circ} - 70^{\circ} && \\ \beta &=& 110^{\circ} &&\\ \end{array}$

    • „Aneinander angrenzende Seiten sind stets parallel zueinander.“ Aneinander angrenzende Seiten können nicht parallel sein. Sie berühren sich in einem Punkt und sind deshalb nicht parallel. Gegenüberliegende Seiten sind im Parallelogramm stets parallel zueinander.
  • Ergänze den Lückentext zum Zeichnen eines Parallelogramms.

    Tipps

    Bei einem Parallelogramm sind nicht anliegende Seiten parallel zueinander.

    Eine Halbgerade hat einen Anfangspunkt aber keinen Endpunkt.

    Lösung

    Der Lückentext lässt sich folgendermaßen vervollständigen:

    Willi möchte ein Parallelogramm zeichnen. Dafür benötigt er verschiedene Werkzeuge. Zum Messen von Längen benötigt er ein Lineal. Um Winkel messen zu können, benötigt er ein Geodreieck. Die Kombination beider Werkzeuge hilft uns, parallele Linien zu zeichnen und um zu entscheiden, ob zwei Strecken diese Eigenschaft erfüllen.

    Willi beginnt die Zeichnung mit dem Punkt $\text{A}$. Von diesem Punkt aus konstruiert er eine Strecke. Diese Strecke ist die längste Seite des Parallelogramms. Den Endpunkt der Seite nennt er $\text{B}$.

    Nun misst er am Punkt $\text{B}$ den gegebenen Winkel ab. Dafür benutzt er ein Geodreieck, welches er mit der $0$ am Punkt $\text{B}$ anlegt. Am gegebenen Winkel markiert er dann einen Punkt. Anschließend zeichnet er eine Halbgerade durch diesen Punkt und den Punkt $\text{B}$. Er misst nun die zweite gegebene Seitenlänge ab und nennt das Ende der Strecke Punkt $\text{C}$.

    Nun hat er bereits zwei Seiten des Parallelogramms gezeichnet. Die anderen Seiten des Parallelogramms sind jeweils parallel zur gegenüberliegenden Seite. Willi legt nun also sein Geodreieck am Punkt $C$ an und zeichnet eine parallele Halbgerade zur Strecke $\overline{AB}$ ein. Die parallele Halbgerade zur Seite $\overline{BC}$ zeichnet er nun auch vom Punkt $A$ ausgehend. Diese beiden Halbgeraden schneiden sich im Schnittpunkt $D$.

  • Entscheide, mit welchen Angaben ein Parallelogramm zu konstruieren ist.

    Tipps

    Die Winkelsumme im Parallelogramm beträgt $360°$.

    Gegenüberliegende Winkel sind gleich groß.

    Gegenüberliegende Seiten sind gleich lang.

    Lösung

    Mit folgenden Angaben ist es möglich, ein Parallelogramm zu konstruieren:

    • $a=5~\text{cm}$, $b=7~\text{cm}$, $\alpha=45°$. Aus den gegebenen Angaben können wir schließen, wie groß die Seiten $c$ und $d$ sind, nämlich so groß wie die jeweils gegenüberliegenden Seiten. Außerdem wissen wir, wie groß $\alpha$ ist und können somit auf die Größe von $\gamma$ und der anderen beiden Winkel schließen.
    • $b=5,7~\text{cm}$, $\delta=28°$, $c=8,05~\text{cm}$, $\alpha=152°$. Hier haben wir ebenfalls alle Angaben, um ein Parallelogramm zu konstruieren. Durch die Angabe der Seiten $b$ und $c$ können wir auf die Größe der Seiten $a$ und $d$ schließen. Außerdem haben wir bereits zwei Winkel gegeben und können somit auch die anderen beiden Winkel herausfinden, die entsprechend so groß wie die jeweils gegenüberliegenden Winkel sind.
    Mit folgenden Angaben ist es nicht möglich, ein Parallelogramm zu konstruieren:
    • $d=4~\text{cm}$, $\beta=78°$, $c=9,7~\text{cm}$, $b=5~\text{cm}$. Im Parallelogramm sind gegenüberliegende Seiten stets gleich lang. Somit müssen auch die Seiten $b$ und $d$ gleich lang sein. Da dies hier nicht der Fall ist, ist das Parallelogramm auch nicht konstruierbar.
    • $\gamma=97°$, $b=17~\text{cm}$, $d=17~\text{cm}$, $\beta=92°$, $a=2~\text{cm}$. Wie in allen Vierecken ist die Innenwinkelsumme immer gleich $360°$ (es gilt also $\alpha + \beta + \gamma + \delta = 360°$). Wir wissen, dass gegenüberliegende Winkel im Parallelogramm immer gleich groß sind. Hier ist $\gamma=97°$ und somit muss auch gelten $\alpha=97°$. Laut diesen Angaben ist $\beta=92°$ und somit muss auch $\delta=92°$ sein. Addieren wir diese Werte nun jedoch alle zusammen, sehen wir: $97° + 92° + 97° + 92° = 378°$ und das ist größer als $360°$. Eine Konstruktion ist mit diesen Angaben also nicht möglich.
    • $\beta=54,3°$, $b=6~\text{cm}$, $\delta=45,3°$, $a=12~\text{cm}$, $c=6~\text{cm}$. Auch hier hilft es wieder zu wissen, dass gegenüberliegende Winkel gleich groß sind im Parallelogramm. $\beta$ und $\delta$ liegen sich gegenüber und müssen demnach gleich groß sein. Die Angaben lauten jedoch $\beta=54,3°$ und $\delta=45,3°$. Somit ist das Parallelogramm mit diesen Angaben nicht konstruierbar.

  • Ermittle die fehlende Angabe zur Konstruktion eines Parallelogramms.

    Tipps

    Gegenüberliegende Seiten sind gleich groß.

    Die Innenwinkelsumme des Parallelogramms beträgt $360°$.

    Lösung

    1) Gegeben:

    • $a = 3~\text{cm}$
    • $b = 9~\text{cm}$
    • $\gamma = 90°$
    Gesucht:
    • $\alpha = 90°$, denn gegenüberliegende Winkel sind gleich groß.
    • $c = 3~\text{cm}$, denn gegenüberliegende Seiten sind stets gleich groß. Gegenüber von $c$ liegt $a$ und diese Seite ist $3~\text{cm}$ lang. Also ist $c = 3~\text{cm}$.

    2) Gegeben:

    • $c = 5~\text{cm}$
    • $d = 9~\text{cm}$
    • $\alpha = 100°$
    Gesucht:
    • $\delta = 80°$, denn gegenüberliegende Winkel sind gleich groß und die Winkelsumme beträgt $360°$. Wir wissen also, dass auch $\gamma = 100°$ sein muss. Es gilt bereits, dass $\alpha + \gamma = 200°$ beträgt. Somit muss $\beta + \delta = 160°$ groß sein, damit die Winkelsumme insgesamt $360°$ beträgt. Deshalb ist sowohl $\beta$ als auch $\delta$ jeweils $80°$ groß.
    • $a = 5~\text{cm}$, denn auch hier wissen wir bereits, dass $c=5~\text{cm}$ ist. Somit ist $a$ ebenfalls so groß, denn gegenüberliegende Seiten sind stets gleich lang.

    3) Gegeben:

    • $d = 6~\text{cm}$
    • $b = 6~\text{cm}$
    • $\alpha = 130°$
    Gesucht:
    • $\delta = 50°$, denn gegenüberliegende Winkel sind gleich groß und die Winkelsumme beträgt $360°$. Wir wissen also, dass auch $\gamma = 130°$ sein muss. Es gilt bereits, dass $\alpha + \gamma = 260°$ beträgt. Somit muss $\beta + \delta = 100°$ groß sein, damit die Winkelsumme insgesamt $360°$ beträgt. Deshalb ist sowohl $\beta$ als auch $\delta$ jeweils $50°$ groß.
    • $a = \text{nicht eindeutig zu bestimmen}$, denn gegeben sind uns nur zwei gegenüberliegende Seiten. Wir können anhand eines Winkels und zwei parallelen Seitenlängen nicht auf die Länge der anderen Seiten schließen.

    4) Gegeben:

    • $d = 7~\text{cm}$
    • $a = 5~\text{cm}$
    • $\beta = 190°$
    Gesucht:
    • $\gamma = \text{unmöglich}$, denn $\beta$ ist bereits $190°$ groß. Somit wäre auch der gegenüberliegende Winkel $\alpha = 190°$. In der Summe sind das allerdings schon $380°$. Das ist größer als die Winkelsumme von $360°$. Daher ist es nicht möglich, dieses Parallelogramm so zu konstruieren, beziehungsweise auf die fehlende Größe zu schließen.

  • Entscheide, welche der Figuren ein Parallelogramm ist.

    Tipps

    Bei einem Parallelogramm müssen gegenüberliegende Seiten parallel zueinander sein.

    Gegenüberliegende Winkel müssen gleich sein.

    Lösung

    Diese Figuren sind keine Parallelogramme:

    • Bild $1$: Das ist ein Dreieck. Ein Dreieck ist kein Parallelogramm, da gegenüberliegende Seiten nicht parallel sind.
    • Bild $5$: Das ist ein Trapez. Hier gibt es zwar ein Paar paralleler Seiten, jedoch sind alle gegenüberliegende Seiten parallel zueinander.

    Diese Figuren sind Parallelogramme:

    • Bild $2$: Das ist ein Rechteck. Hier sind alle gegenüberliegende Seiten parallel zueinander und gegenüberliegende Winkel sind gleich.
    • Bild $3$: Das ist die klassische Form eines Parallelogramms. Auch hier sind gegenüberliegende Seiten parallel zueinander und gegenüberliegende Winkel gleich.
    • Bild $4$: Das ist ein Quadrat. Dieses entspricht ebenfalls der Definition eines Parallelogramms, denn auch beim Quadrat sind gegenüberliegende Seiten parallel zueinander.
  • Bestimme die fehlenden Koordinaten.

    Tipps

    Im Parallelogramm sind gegenüberliegende Seiten immer gleich lang.

    Der Abstand von $A$ zu $B$ auf der $x$-Achse ist genauso groß wie der Abstand von $C$ zu $D$.

    Ferner gilt auch, dass der Abstand von $B$ zu $C$ auf der $y$-Achse genauso groß ist wie der Abstand von $A$ zu $D$.

    Beispiel: Gegeben sind folgende Koordinaten

    • $\text{A} (0 \vert 0)$
    • $\text{B} (~~ \vert 0)$
    • $\text{C} (5\vert ~~)$
    • $\text{D} (1\vert3)$
    Zu finden ist also die $x$-Koordinate des Punktes $B$ und die $y$-Koordinate des Punktes $C$. Dazu können wir uns die Zusammenhänge des gegebenen Koordinaten anschauen. Wir wissen, dass sowohl $A$ als auch $B$ auf der $x$-Achse liegen, denn beide $y$-Koordinaten sind gleich $0$. Da $\overline{AB}$ parallel zu $\overline{CD}$ ist, müssen die $y$-Koordinaten also ebenfalls gleich sein, sonst ist die Seite $\overline{CD}$ nicht parallel zur gegenüberliegenden Seite. Da $D$ die $y$-Koordinate $3$ hat, gilt das somit auch für $C$. Der Punkt liegt also bei $(5\vert 3)$
    Wir wissen auch, dass diese beiden Seiten gleich lang sind und wir können anhand der Koordinaten ablesen, dass der Abstand zwischen $C$ und $D$ insgesamt $4$ Einheiten beträgt. Somit muss das auch für den Abstand von $A$ zu $B$ gelten. Da wir bereits wissen, dass $A$ die $x$-Koordinate $0$ hat und $B$ demnach $4$ Einheiten entfernt liegt, können wir daraus schließen, dass $B$ bei $(4\vert 0)$ liegt.

    Lösung

    Um die fehlenden Koordinaten herauszufinden, hilft uns unser Wissen über die Eigenschaften eines Parallelogramms. Hierbei geht es vor allem um die Eigenschaft, dass gegenüberliegende Seiten immer gleich lang sind. Somit sind die Abstände von $A$ zu $B$ und $C$ zu $D$ beziehungsweise von $B$ zu $C$ und von $A$ zu $D$ immer gleich groß.

    Parallelogramm $1$
    Gesucht sind die Koordinaten des Punktes $D$. Schauen wir uns die Abstände der anderen Punkte zueinander an:
    $A$ hat die Koordinaten $(1 \vert 1)$ und $B (3 \vert 1)$. Der Abstand auf der $x$-Achse zwischen diesen beiden Punkten beträgt also $2$ Einheiten. Somit muss der Abstand von $C$ zu $D$ auf der $x$-Achse ebenfalls $2$ Einheiten betragen. Da $C$ die Koordinaten $(4 \vert 4)$ hat, muss die $x$-Koordinate für $D$ also bei $2$ liegen. Da der Abstand von $A$ zu $C$ $3$ Einheiten entlang der $y$-Achse beträgt, muss das auch für den Abstand von $A$ zu $D$ gelten. Somit hat $D$ die Koordinaten $(2 \vert 4)$.

    Parallelogramm $2$
    Hier sind die Koordinaten des Punktes $C$ gesucht. Auch hier hilft uns ein genauer Blick auf die Abstände der anderen Punkte zueinander:
    $A$ hat die Koordinaten $(1 \vert 1)$ und $B$ hat die Koordinaten $(4 \vert 2)$. Der Abstand entlang der $x$-Achse beträgt also somit $3$ Einheiten. Da dies auch für den Abstand von $C$ zu $D$ gelten muss und $D$ die Koordinaten $(2 \vert 3)$ hat, liegt die $x$-Koordinate von $C$ also bei $5$. Der Abstand von $A$ zu $D$ entlang der $y$-Achse beträgt $2$ Einheiten. Somit hat $C$ die Koordinaten $(5 \vert 4)$.

    Parallelogramm $3$
    Hier ist sowohl die $x$-Koordinate des Punktes $C$ als auch die $y$-Koordinate des Punktes $D$ gesucht. Dies lässt sich ebenfalls durch die Abstände der anderen Punkte zueinander herausfinden:
    $A$ hat die Koordinaten $(-1 \vert -2)$ und $B$ die Koordinaten $(4 \vert 1)$. Der Abstand entlang der $x$-Achse beträgt also $5$ Einheiten. Da die $x$-Koordinate von $D$ bei $0$ liegt, muss die $x$ Koordinate von $C$ also bei $5$ liegen. Außerdem gilt, dass der Abstand der $y$-Koordinaten von $A$ zu $D$ gleich dem Abstand von $B$ zu $C$ ist. Dieser beträgt von $B$ zu $C$ insgesamt $6$ Einheiten. Somit liegt die $y$-Koordinate von $D$ also bei $4$. Es ergeben sich für $C$ und $D$ also folgende Koordinaten: $C(5 \vert 7)$ und $D(0 \vert 4)$.

    Parallelogramm $4$
    Bei diesem Parallelogramm ist die $y$-Koordinate von $A$ und die $x$-Koordinate von $D$ gesucht. Der Abstand von $B$ zu $C$ entlang der $y$-Achse beträgt $5,8$ Einheiten. Da $D$ hier bei $5,3$ liegt, lauten die Koordinaten für $A(-1,3 \vert -0,5)$. Von $A$ zu $B$ beträgt der Abstand entlang der $x$-Achse insgesamt $3,2$ Einheiten. Da dies auch für den Abstand von $D$ zu $C$ gelten muss, und $C$ bei $(-1,1 \vert 4,3)$ liegt, lauten die Koordinaten von $D(-4,3 \vert 5,3)$.