Reelle Zahlen
Reelle Zahlen bestehen aus rationalen und irrationalen Zahlen. Natürliche Zahlen sind zählbare Zahlen, ganze Zahlen beinhalten ihre Gegenzahlen. Rationale Zahlen sind Brüche, irrationalen Zahlen können nicht als Bruch dargestellt werden. Erfahre mehr über reellen Zahlen und wie die alle rationalen und irrationalen Zahlen umfassen.
- Was sind reelle Zahlen?
- Zahlenmenge reelle Zahlen – irrationale Zahlen und rationale Zahlen
- Reelle Zahlen – Beispiele
- Beweis – Wurzel $2$ ist irrational
- Reelle Zahlen auf der Zahlengeraden
- Reelle Zahlen – Zeichen und Teilmengen
- Mit reellen Zahlen rechnen
- Ausblick – das lernst du nach Reelle Zahlen
- Reelle Zahlen – Zusammenfassung
- Häufig gestellte Fragen zum Thema Reelle Zahlen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Reelle Zahlen Übung
-
Beschreibe die verschiedenen Zahlbereiche.
TippsMit natürlichen Zahlen kannst du die Anzahl von Elementen einer Menge bestimmen.
Negative Zahlen bilden keinen eigenen Zahlbereich.
Jede Wurzel einer Primzahl ist irrational.
LösungMan unterscheidet mehrere Zahlbereiche, von denen einige ineinander enthalten sind und andere nicht. Mit den natürlichen Zahlen hast du einmal rechnen und zählen gelernt. Sie beginnen bei $0$ oder bei $1$ (je nach Konvention) und werden immer größer. Die Menge aller natürlichen Zahlen wird mit dem Symbol $\mathbb N$ bezeichnet. Mit den natürlichen Zahlen kannst du alle Additionen durchführen, aber nicht alle Subtraktionen. Ist der Subtrahend kleiner als der Minuend, so ist die Differenz negativ. Nimmst du zu den natürlichen Zahlen noch alle möglichen Ergebnisse von Subtraktionen natürlicher Zahlen hinzu, so erhältst du die Menge $\mathbb Z$ der ganzen Zahlen. Diese Menge besteht also aus allen natürlichen Zahlen (mit $0$) sowie deren Gegenzahlen. In der Menge der rationalen Zahlen sind alle natürlichen und ganzen Zahlen enthalten sowie alle Zahlen, die du als Bruch aus den beiden schreiben kannst. Die Menge der rationalen Zahlen wird mit dem Symbol $\mathbb Q$ bezeichnet.
Rationale Zahlen kannst du auch als Dezimalbrüche schreiben, aber nicht jeder Dezimalbruch beschreibt eine rationale Zahl. Denn nur endliche Dezimalbrüche und periodische Dezimalbrüche lassen sich als Brüche umschreiben. Nur solche Dezimalbrüche sind also rationale Zahlen.
Umgekehrt gehören alle unendlichen, nichtperiodischen Dezimalbrüche nicht zur Menge der rationalen Zahlen. Solche Dezimalbrüche sind aber reelle Zahlen. Die Menge der reellen Zahlen enthält alle rationalen Zahlen, also auch alle ganzen und alle natürlichen Zahlen und wird mit dem Symbol $\mathbb R$ bezeichnet. Sie enthält mit den unendlichen, nichtperiodischen Dezimalbrüchen nun aber auch Zahlen, die nicht als Brüche ganzer Zahlen geschrieben werden können. Solche Dezimalbrüche sind also keine rationalen Zahlen und heißen daher irrationale Zahlen. Die Menge dieser Zahlen wird mit $\mathbb I$ bezeichnet. Typische irrationale Zahlen sind die Kreiszahl $\pi$ sowie die Wurzeln von Primzahlen, also $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ usw.
Die Mengen der natürlichen, ganzen, rationalen und reellen Zahlen sind sukzessive ineinander enthalten:
$\mathbb N \subset \mathbb Z \subset \mathbb Q \subset \mathbb R$
Die Menge $\mathbb I$ der irrationalen Zahlen ist dagegen nur in der Menge $\mathbb R$ der reellen Zahlen enthalten und ist insbesondere keine Erweiterung eines der anderen Zahlbereiche.
-
Bestimme, zu welchen Zahlbereichen die Zahlen gehören.
TippsDie Menge $\mathbb Z$ der ganzen Zahlen enthält die Zählzahlen und ihre Gegenzahlen.
Jeder Bruch ganzer Zahlen gehört zu der Menge $\mathbb Q$ der rationalen Zahlen.
Irrationale Zahlen kannst du nur durch Symbole vollständig aufschreiben wie z. B. $\sqrt{3}$, nicht durch Dezimalbrüche mit endlich vielen Ziffern.
LösungMan unterscheidet vier verschiedene Zahlbereiche. Hier ist eine Beschreibung der Zahlen dieser Zahlbereiche:
$\mathbb N$:
Die Menge $\mathbb N$ der natürlichen Zahlen besteht aus den Zählzahlen, mit denen du Anzahlen bestimmst. Eine Anzahl ist nie negativ, daher enthält $\mathbb N$ keine negativen Zahlen. Zu den natürlichen Zahlen gehören hier die Zahlen $6$ und $110$.
$\mathbb Z$:
Die Menge $\mathbb Z$ der ganzen Zahlen enthält die natürlichen Zahlen, die $0$ und deren Gegenzahlen, also auch negative Zahlen. Solche negativen Zahlen kommen vor, wenn du Differenzen ausrechnest. Auch bei der Nummerierung von Stockwerken sind negative Zahlen sinnvoll: Du beginnst im Erdgeschoss mit $0$, zählst die Stockwerke nach oben wie üblich und die Kellergeschosse mit negativen Zahlen. In der Aufgabe sind $-54$ und $-132$ Beispiele ganzer Zahlen.
$\mathbb Q$:
Kommazahlen sind weder natürliche noch ganze Zahlen. Endliche Kommazahlen oder solche mit periodischen Nachkommastellen sind rationale Zahlen, denn du kannst sie als Bruch schreiben. Der Bruch $2\frac{5}{7}$, der endliche Dezimalbruch $-0,18=\frac{-18}{100}$ sowie der periodische Dezimalbruch $0,\overline{3} = \frac{1}{3}$ sind Beispiele rationaler Zahlen.
$\mathbb R$:
Alle nichtperiodischen Dezimalbrüche sind irrationale Zahlen. Du erkennst sie nicht leicht an den Nachkommastellen, denn du kannst sie ja nie ganz aufschreiben. Daher ist es nützlich zu wissen, dass die Kreiszahl $\pi$ sowie die Wurzeln $\sqrt{2},$ $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7}$ usw. irrational sind. Die Menge $\mathbb R$ der reellen Zahlen umfasst alle vorher genannten Zahlbereiche, also auch die Menge der irrationalen Zahlen.
$\mathbb I$:
Die Menge $\mathbb I$ enthält dagegen nur die irrationalen Zahlen, also keine Zahl der Zahlenbereiche $\mathbb N$, $\mathbb Q$ oder $\mathbb R$. Die Kreiszahl $\pi$ und die Zahlen $\sqrt{3}$ und $\sqrt{7}$ sind irrational, sie sind also in keiner der Mengen $\mathbb N$, $\mathbb Z$ oder $\mathbb Q$ enthalten.
-
Charakterisiere die Zahlen.
TippsDie Differenz zweier natürlicher Zahlen ist eine natürliche oder ganze Zahl.
Nicht jede Wurzel einer ganzen Zahl ist irrational.
Das Produkt einer rationalen und einer irrationalen Zahl ist stets irrational.
LösungDie Mengen der natürlichen, ganzen und rationalen Zahlen sind sukzessive ineinander enthalten:
$ \mathbb N \subset \mathbb Z \subset \mathbb Q$
Die Menge $\mathbb I$ der irrationalen Zahlen ist disjunkt zur Menge der rationalen Zahlen und beide Mengen zusammen ergeben die Menge $\mathbb R$ der reellen Zahlen:
$\mathbb I \cap \mathbb Q = \emptyset$ und $\mathbb Q \cup \mathbb I = \mathbb R$
Natürliche Zahlen haben keine Nachkommastellen und keine negativen Vorzeichen. Allerdings können manche Brüche so gekürzt werden, dass nur eine natürliche Zahl bzw. ein Bruch mit Nenner $1$ übrig bleibt. Daher lassen sich solche Brüche der Menge der natürlichen Zahlen zuordnen.
$\mathbb N$:
- $\sqrt{36}=6$
- $2\frac{21}{3} = 2+\frac{21}{3}=2+\frac{7}{1}=9$
$\mathbb Z$:
- $-\sqrt{36}=-6$
- $(-2) \cdot \sqrt{4} = (-2) \cdot 2 = -4$
- $17-21 = -4$
$\mathbb Q$:
- $-1,\overline{2345} = -\frac{12 345}{10 000}$
- $2\frac{3}{4} = \frac{11}{4} $
- $\frac{-19}{21}$
$\mathbb I$:
- $2\pi$
- $2 \cdot \sqrt{3}$
- $-\pi+\sqrt{3}$
- $2+\sqrt{3}$
-
Analysiere die Aussagen.
TippsDas Produkt rationaler Zahlen ist rational. Überlege, was daraus für die Wurzeln irrationaler Zahlen und für die Produkte rationaler und irrationaler Zahlen folgt.
LösungFolgende Aussagen sind richtig:
- „Ist eine Zahl irrational, so ist auch deren Wurzel irrational.“ Jede Zahl ist das Quadrat ihrer Wurzel. Wäre die Wurzel rational, so wäre auch die Zahl selbst rational, denn das Quadrat rationaler Zahlen ist rational.
- „Die Summe einer rationalen und einer irrationalen Zahl ist irrational.“ Andernfalls könntest du die Summe als Bruch schreiben. Nach Umstellen der Gleichung wäre dann die irrationale Zahl die Differenz zweier Brüche, also selbst ein Bruch.
- „Jedes rationale Vielfache einer irrationalen Zahl ist irrational.“ Wäre das Produkt einer rationalen und einer irrationalen Zahl rational, so könntest du das Produkt und einen der Faktoren als Bruch schreiben. Durch Multiplikation mit dem Kehrwert des rationalen Faktors könntest du dann auch den irrationalen Faktor als Bruch schreiben.
- „Jede Lösung einer Gleichung ist eine rationale Zahl.“ Eine Lösung der Gleichung $x^2+1=0$ kann keine reelle Zahl sein. Denn für jede reelle Zahl $x$ ist $x^2 \geq 0$, also $x^2+1\geq 1$.
- „Jede Lösung einer Gleichung ist eine irrationale Zahl.“ Die Gleichung $x^2-4=0$ hat nur die rationalen Lösungen $+2$ und $-2$. Es sind sogar beides ganze Zahlen.
- „Das Produkt zweier irrationaler Zahlen ist stets irrational.“ Das Produkt der irrationalen Zahlen $\sqrt{2}$ und $-\sqrt{2}$ ist die rationale Zahl $-2$.
-
Vervollständige die Sätze.
TippsDen Dezimalbruch $0,\overline{3}$ kannst du als Bruch $\frac{1}{3}$ darstellen.
Jeden endlichen Dezimalbruch kannst du als Bruch mit einer Zehnerpotenz im Nenner darstellen.
Die Kreiszahl $\pi$ ist ein unendlicher, nichtperiodischer Dezimalbruch.
LösungFolgende Aussagen sind richtig:
- „Jede irrationale Zahl, aber keine rationale Zahl ... ist ein unendlicher, nichtperiodischer Dezimalbruch.“ Jede irrationale Zahl ist eine reelle Zahl, lässt sich also als Dezimalbruch schreiben. Endliche Dezimalbrüche und periodische Dezimalbrüche kannst du immer als Brüche ganzer Zahlen umformulieren, sie sind also rational. Daher ist jede irrationale Zahl ein unendlicher, nichtperiodischer Dezimalbruch.
- „Jeder der Zahlbereiche $\mathbb Q$, $\mathbb I$ und $\mathbb R$ ... enthält unendlich viele Zahlen.“ Die Zahlbereiche $\mathbb Q$ und $\mathbb R$ enthalten nämlich die unendlich vielen natürlichen Zahlen. Der Zahlbereich $\mathbb I$ enthält zwar nicht die natürlichen Zahlen, aber trotzdem unendlich viele verschiedene Zahlen, z. B. alle Vielfache von $\pi$ und alle Wurzeln der Primzahlen.
- „Nicht jeder der Zahlbereiche $\mathbb Q$, $\mathbb I$ und $\mathbb R$ ... enthält die natürlichen Zahlen.“ Jede natürliche Zahl ist nämlich eine rationale Zahl, ist also in der Menge $\mathbb Q$ enthalten. Insbesondere ist keine natürliche Zahl in der Menge $\mathbb I$ der irrationalen Zahlen enthalten.
- „Nicht jede rationale Zahl ... ist ein endlicher Dezimalbruch.“ Die Zahl $\frac{1}{3}$ ist nämlich rational, aber der zugehörige Dezimalbruch $0,\overline{3}$ ist unendlich.
- „Keine rationale Zahl, aber mindestens eine irrationale Zahl ... hat als Quadrat die Zahl $2$.“ Die Lösungen der Gleichung $x^2 = 2$ sind $\sqrt{2}$ und $-\sqrt{2}$. Beide Zahlen sind irrational. Man kann auch beweisen, dass keine Lösung der Gleichung $x^2=2$ rational sein kann. Es gibt also keine rationale Zahl, deren Quadrat $2$ ist.
-
Analysiere die Zahlen.
TippsEs gibt auch Zahlen, die nicht den reellen Zahlen zugeordnet werden können. Diese kannst du ignorieren.
Nicht jede Wurzel einer reellen Zahl ist wieder eine reelle Zahl.
Die Wurzel einer irrationalen Zahl ist stets wieder irrational.
LösungJede reelle Zahl kannst du als Dezimalbruch schreiben und jeder Dezimalbruch ist eine reelle Zahl. Jede reelle Zahl ist entweder rational oder irrational. Rationale Zahlen sind solche Dezimalbrüche, die sich als Bruch ganzer Zahlen umschreiben lassen. Das sind genau die endlichen sowie die periodischen Dezimalbrüche. Alle anderen Dezimalbrüche sind irrational.
In Gleichungen treten manchmal auch Terme auf, die durch keine reelle Zahl beschrieben werden können, die also insbesondere weder rational noch irrational sind. Beispielsweise hat die Gleichung $x^2+1=0$ keine reelle Zahl $x$ als Lösung. Denn für jede reelle Zahl $x$ ist $x^2 \geq 0$ und daher $1 \leq x^2+1 \neq 0$. Schreibst du $x= \sqrt{-1}$ als Lösung dieser Gleichung, so ist $x$ keine reelle Zahl.
Du findest folgende rationale und irrationale Zahlen in dieser Aufgabe:
Rationale Zahlen:
- $-\frac{1}{23}$
- $\frac{2\sqrt{\pi}}{\sqrt{\pi}} = 2$
- $\sqrt{\frac{1}{25}} = \frac{1}{5}$
- $\sqrt{4} = 2$
- $\sqrt{0} = 0$
- $10$
- $\sqrt{3}$
- $\sqrt{\pi}$
- $\frac{\pi}{3}$
- $3\sqrt{3}$
- $\sqrt{-1}$
- $\sqrt{-2^2}$
9.026
sofaheld-Level
6.601
vorgefertigte
Vokabeln
8.048
Lernvideos
37.299
Übungen
33.627
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Brüche multiplizieren – Übungen
- Potenzgesetze