Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Reelle Zahlen – Vollständigkeit

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Zahlraum Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Gib eine Bewertung ab!
Die Autor*innen
Avatar
Steve Taube
Reelle Zahlen – Vollständigkeit
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Reelle Zahlen – Vollständigkeit

Herzlich Willkommen! In diesem Video wird zuerst gezeigt, was man sich darunter vorstellen kann, dass die reellen Zahlen vollständig sind. Die Vollständigkeit reeller Zahlen kann man sich am besten geometrisch vorstellen. Danach wird die Idee präsentiert, die hinter der genauen Definition steckt, ein Beispiel gegeben und am Schluss das Vollständigkeitsaxiom genannt. Die reellen Zahlen sind „ vollständig “. Das heißt, dass beim Übergang zu R die „ Löcher “ auf der Zahlengerade, die in Q noch existieren, geschlossen werden.

Transkript Reelle Zahlen – Vollständigkeit

In diesem Video geht es um die Vollständigkeit der reellen Zahlen. Was es heißt, dass die natürlichen Zahlen vollständig sind, kann man sich am besten geometrisch vorstellen. Da zeichnet man sich einen Zahlenstrahl. Man trägt eine 0 ein und eine 1, und wenn man diesen Einheitsschritt sozusagen hat, kann man sich auch alle anderen Schritte eintragen und dann sind die reellen Zahlen gewissermaßen alle Punkte, die man auf dieser Geraden findet. Als Beispiel habe ich hier mal die Zahlen -1,8 ,0,5 und π eingetragen. Wir können uns also vorstellen, dass wir ein unendlich langes Maßband haben, mit dem wir beliebig genaue Messungen machen können und da finden wir eben auch Punkte, die Zahlen respektieren, die nicht rational sind, wie zum Beispiel π. Und so gibt es überall auf der Zahlengerade Punkte, die nicht zu den rationalen Zahlen gehören. Und so in etwa kann man sich geometrisch vorstellen, was es bedeutet, dass die reellen Zahlen vollständig sind, die Rationalen aber nicht. Es gibt natürlich auch noch eine ganz genaue Definition davon, was Vollständigkeit sein soll. Ich möchte das jetzt hier mal mit Hilfe von Folgen andeuten, was das heißt. Und zwar nehmen wir da diese Folge: a1=2/1, a2=2/1×2/3, a3=2/1×2/3×4/3, bei a4 kommt noch der Faktor 4/5 hinzu, bei a5 der Faktor 6/5 und so weiter. Ich denke ihr seht, wie das gemeint ist und wie Folge weitergeht. Jedenfalls ist jedes Folgeglied eine rationale Zahl, denn ich kann ja alles als Bruch schreiben, aber der Grenzwert dieser Folge, das hat ein Herr Wallace rausgefunden, ist π/2 und das ist ja keine rationale Zahl. Wir haben also eine Folge von rationalen Zahlen, deren Grenzwert nicht rational ist und deswegen sind die rationalen Zahlen nicht vollständig. So was darf bei Vollständigkeit nicht passieren. Und bei reellen Zahlen ist es eben so, dass der Grenzwert einer reellen Folge deren Folgeglieder sich im Unendlichen immer weiter annähern, wirklich auch wieder eine reelle Zahl ist und das ist halt die Vollständigkeit. Gut und für die, die es ganz genau wissen wollen, möchte ich noch das Vollständigkeitsaxiom zitieren, das besagt: Jede nach oben beschränkte, nicht-leere Teilmenge Ac|R hat ein Supremum, also eine kleinste obere Schranke, S in |R. Entscheidend ist dabei, dass das Supremum in |R ist, denn das gilt für Q zum Beispiel nicht. Denn nehmen wir mal die Menge M aller rationalen Zahlen, deren Quadrat echt kleiner, als 2 ist. Dann ist das eine Teilmenge der rationalen Zahlen, aber das Supremum dieser Menge ist \sqrt(2) und das ist keine rationale Zahl. Ich denke, daran kann man gut sehen, was Vollständigkeit bedeutet. Ok und damit ist das Video auch schon vollständig.

4 Kommentare
4 Kommentare
  1. Sehr hilfreiches und gut erklärtes Video! Warum kann meine Mathelehrerin nicht so gut erklären, wie es in diesem Video gemacht wurde?! ;)

    Von Vauceh, vor mehr als 9 Jahren
  2. Danke! Nun hab ichs tatsächlich verstanden :)

    Von Seb 1993, vor mehr als 10 Jahren
  3. Hallo Seb 1993,

    leider kann ich momentan keine Videos produzieren. Ich habe auch auf der Plattform auf die Schnelle kein Video zu Infimum/Supremum gefunden, was nicht heißt, dass es keins gibt. Du könntest bei Funktionen und Grenzwerten fündig werden.
    Ich will dir hier schnell ein Beispiel geben: Die Funktion f(x) = 1/x² hat mehrere untere Schranken, z.B. y = -1. Der Wert y = -1 wird von der Funktion niemals unterschritten. y = -2 und y = -0,5 sind auch untere Schranken der Funktion y = 1/x². Es gibt unendlich viele dieser unteren Schranken, aber nur eine ist besonders, nämlich y = 0. Sie ist die GRÖSSTE aller unteren Schranken der Funktion. Es gibt keine untere Schranke von y = 1/x², die größer als die 0 ist. Aufgrund dieser besonderen Eigenschaft nennt man dann y = 0 Infimum von y = 1/x², "größte untere Schranke". Das Supremum ist entsprechend die "kleinste obere Schranke".

    Von Steve Taube, vor mehr als 10 Jahren
  4. Hey Steve! Vollständigkeit hab ich nun begriffen, jedoch hätte ich gern mal eine Erklärung, was genau SUPREMUM und INFIMUM eigentlich bedeutet.. Das ist mir irgendwie nicht klar geworden durch meine Unterlagen.
    Kannst du das vielleicht mal anhand eines Videos erläutern? Mithilfe eines Beispiels?

    Von Seb 1993, vor mehr als 10 Jahren
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.807

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.860

Lernvideos

37.810

Übungen

33.936

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden