Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Geradengleichungen – Normalform (y=mx+b)

Es ist wichtig, die Normalform einer Geradengleichung $y = m\,x + b$ zu verstehen, um den Graphen richtig zu interpretieren. Die Steigung $m$ und der $y$-Achsenabschnitt $b$ sind entscheidend, um die Route des Marsrovers zu berechnen. Möchtest du mehr dazu erfahren? Dann schau das Video unten an! Alles Weitere findest du im folgenden Text.

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.1 / 121 Bewertungen
Die Autor*innen
Avatar
Team Digital
Geradengleichungen – Normalform (y=mx+b)
lernst du in der 7. Klasse - 8. Klasse

Geradengleichungen – Normalform (y=mx+b) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Geradengleichungen – Normalform (y=mx+b) kannst du es wiederholen und üben.
  • Stelle die gesuchte lineare Funktion auf.

    Tipps

    Die Normalform einer linearen Funktion lautet $y=mx+b$.

    Dabei ist $m$ die Steigung und $b$ der $y$-Achsenabschnitt.

    Der Marsrover verbraucht $\mathbf{2}$ Energieeinheiten pro Kilometer. Es handelt sich um eine Energieabnahme, also eine fallende Gerade.

    Bevor der Marsrover losfährt, hat er genau $\mathbf{20}$ Energieeinheiten. Der Punkt $\mathbf{(0\ \vert\ 20)}$ liegt also auf der Geraden.

    Lösung

    Gesucht ist die Normalform einer linearen Funktion. Diese lautet allgemein $y=mx+b$.

    Dabei ist $\mathbf{m}$ die Steigung und $\mathbf{b}$ der $\mathbf{y}$-Achsenabschnitt.

    Steigung

    Die Steigung $m$ ist für eine steigende Gerade positiv und für eine fallende Gerade negativ.

    Da der Marsrover pro Kilometer $\mathbf{2}$ Energieeinheiten verbraucht, handelt es sich um eine Energieabnahme, also eine fallende Gerade. Die gesuchte lineare Funktion hat demnach eine negative Steigung, nämlich $m=-2$.

    $\mathbf{y}$-Achsenabschnitt

    Außerdem ist bekannt, dass der Marsrover vor dem Losfahren $\mathbf{20}$ Energieeinheiten hat. Somit ist der Punkt $(0\ \vert\ 20)$ gegeben. Die $y$-Koordinate dieses Punktes ist der gesuchte $y$-Achsenabschnitt $b$.

    Nun können wir die lineare Funktion in Normalform aufstellen. Diese lautet:

    $y=-2x+20$

    Um zu bestimmen, wie weit der Rover mit seiner übrigen Energie noch kommt, setzen wir für $y$ den Wert 0$ ein. Genau dann hat der Marsrover nämlich keine Energie mehr übrig. Wir erhalten:

    $ \begin{array}{llll} 0 & = & -2x+20 & \vert +2x\\ 2x & = & 20 & \vert :(2) \\ x &=& 10 & \end{array} $

    Der Marsrover kann mit seinen $20$ Energieeinheiten noch $10\ \text{km}$ zurücklegen und besitzt demzufolge für die geplante Mission genügend Energie.

  • Bestimme die gesuchte Geradengleichung.

    Tipps

    Wenn zwei Punkte $P_1(x_1\ \vert\ y_1)$ und $P_2(x_2\ \vert\ y_2)$ einer Geraden bekannt sind, kannst du die Steigung wie folgt berechnen:

    $m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}$

    Wenn ein Punkt $P(x\ \vert\ y)$ und die Steigung $m$ einer Geraden bekannt sind, dann kannst du den $y$-Achsenabschnitt berechnen. Schaue dir das folgende Beispiel an:

    Mit $m=2$ und $P(1\ \vert\ 0)$ erhalten wir diese Berechnung für den $y$-Achsenabschnitt:

    $ \begin{array}{llll} 0 & = & 2\cdot 1+b & \\ 0 & = & 2+b & \vert -2 \\ -2 & = & b \end{array} $

    Somit lautet die Geradengleichung in Normalform:

    $y=2x-2$

    Lösung

    Zunächst soll die Steigung zwischen den Punkten $S_1$ und $F$ sowie den Punkten $S_2$ und $F$ berechnet werden.

    Da je zwei Punkte $P_1(x_1\ \vert\ y_1)$ und $P_2(x_2\ \vert\ y_2)$ einer Geraden bekannt sind, kann die Steigung wie folgt bestimmt werden:

    $m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}$

    Angewendet auf die Punkte $S_1(1\ \vert\ 0)$ und $F(7\ \vert\ 6)$ erhalten wir:

    $m_1=\frac{\Delta y}{\Delta x}=\frac{6-0}{7-1}=\frac{6}{6}=1$

    Angewendet auf die Punkte $S_2(5\ \vert\ 0)$ und $F(7\ \vert\ 6)$ erhalten wir:

    $m_1=\frac{\Delta y}{\Delta x}=\frac{6-0}{7-5}=\frac{6}{2}=3$

    Da der Marsrover lediglich eine maximale Steigung von $2,5$ überwinden kann, eliminieren wir die Route von dem Punkt $S_2$ zu dem Punkt $F$, da $3>2,5$.

    Somit kennen wir die Steigung von $m=1$ für die gesuchte Geradengleichung in Normalform:

    $y=1\cdot x+b$

    Jetzt muss nur noch der $y$-Achsenabschnitt $b$ berechnet werden. Dafür setzen wir einen der bekannten Punkte in unsere Gleichung ein. Mit dem Punkt $S_1(1\ \vert\ 0)$ ergibt sich:

    $ \begin{array}{llll} 0 & = & 1\cdot 1+b & \\ 0 & = & 1+b & \vert -1 \\ -1 & = & b \end{array} $

    Die vollständige Geradengleichung in Normalform lautet:

    ${y=1\cdot x-1}$

  • Ermittle die Geradengleichung in Normalform für die abgebildeten Funktionsgraphen.

    Tipps

    Die Steigung $m$ ist wie folgt definiert:

    $m=\frac{\Delta y}{\Delta x}$

    Die Steigung des abgebildeten Funktionsgraphen lautet somit:

    $m=\frac{1}{2}=0,5$

    Der $y$-Achsenabschnitt entspricht der $y$-Koordinate des Schnittpunktes mit der $y$-Achse.

    Lösung

    Das Vorgehen soll anhand des erstens Beispiels verdeutlicht werden: Die Gerade verläuft durch den Ursprung $P(0\ \vert\ 0)$. Demnach ist der $y$-Achsenabschnitt $b=0$. Für die Steigung erhalten wir Folgendes:

    $m=\frac{\Delta y}{\Delta x}=\frac{1}{2}=0,5$

    Somit erhalten wir $y=0,5x$.

  • Leite die gesuchte lineare Funktion her.

    Tipps

    Die Steigung $m$ beschreibt den Kerosinverbrauch in Litern pro Kilometer.

    Der $y$-Achsenabschnitt $b$ ist das verbrauchte Kerosin in Litern bei $0$ Kilometern zurückgelegter Strecke.

    Lösung

    Diese Angabe ist uns bekannt:

    • Das Flugzeug verbraucht $700$ Liter Kerosin pro $100$ Kilometer.
    Außerdem wissen wir, dass das Flugzeug vor dem Abflug, also bei $0\ \text{km}$ zurückgelegter Strecke, noch keinen Kraftstoff verbraucht hat. Wir kennen also den Punkt $P(0\ \vert\ 0)$ und somit den $y$-Achsenabschnitt $b=0$.

    Die Steigung ergibt sich durch:

    $m=\frac{700}{100}=7$

    Daraus resultiert folgende Geradengleichung in Normalform:

    $y=7x+0$ bzw. $y=7x$

  • Beschreibe die Normalform einer linearen Funktion.

    Tipps

    Die Normalform einer linearen Funktion lautet in Worten:

    $y$-Koordinate = Steigung $\cdot$ $x$-Koordinate + $y$-Achsenabschnitt

    Wenn zwei Punkte einer Geraden bekannt sind, dann kann ihre Steigung wie folgt berechnet werden:

    ${m=\frac{y_2-y_1}{x_2-x_1}}$

    Lösung

    Die Normalform einer linearen Funktion lautet:

    $y=mx+b$

    Dabei ist $m$ die Steigung der Geraden und $b$ der $y$-Achsenabschnitt.

    Wenn zwei Punkte $P_1(x_1\ \vert\ y_1)$ und $P_2(x_2\ \vert\ y_2)$ einer Geraden bekannt sind, dann kannst du die Steigung wie folgt berechnen:

    $m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}$

    In dem abgebildeten Beispiel mit $P(3\ \vert\ 2)$ und $Q(4\ \vert\ 5)$ resultiert diese Steigung:

    $m=\frac{\Delta y}{\Delta x}=\frac{5-2}{4-3}=\frac{3}{1}=3$

  • Bestimme die jeweilige Geradengleichung.

    Tipps

    Schaue dir das folgende Beispiel an:

    • gegeben: $m=2$ und $P(1\ \vert\ 2)$
    • gesucht: $b$

    Die Angaben eingesetzt in die Normalform der Geradengleichung liefern diese Berechnung:

    $ \begin{array}{llll} 2 & = & 2\cdot 1+b & \\ 2 & = & 2+b & \vert -2 \\ 0 & = & b \end{array} $

    Wenn zwei Punkte gegeben sind, dann kannst du die Steigung wie folgt bestimmen:

    • gegeben: $P(1\ \vert\ 2)$ und $Q(5\ \vert\ 10)$
    • gesucht: $m$

    Für die Steigung resultiert diese Berechnung:

    $m=\frac{\Delta y}{\Delta x}=\frac{10-2}{5-1}=\frac{8}{4}=2$

    Lösung

    Das Vorgehen soll anhand der ersten drei Beispiele verdeutlicht werden:

    Beispiel 1

    • gegeben: $m=2,5$ und $P(2\ \vert\ 7)$
    • gesucht: $b$

    Das Einsetzen der Angaben in die Normalform der Geradengleichung liefert:

    $ \begin{array}{llll} 7 & = & 2,5\cdot 2+b & \\ 7 & = & 5+b & \vert -5 \\ 2 & = & b & \end{array} $

    Somit erhalten wir die Geradengleichung $y=2,5x+2$.

    Beispiel 2

    • gegeben: $b=7$ und $P(2\ \vert\ 19)$
    • gesucht: $m$

    Das Einsetzen der Angaben in die Normalform der Geradengleichung liefert:

    $ \begin{array}{llll} 19 & = & m\cdot 2+7 & \vert -7 \\ 12 & = & m\cdot 2 & \vert :2 \\ 6 & = & m & \end{array} $

    Somit erhalten wir die Geradengleichung $y=6x+7$.

    Beispiel 3

    • gegeben: $P(-2\ \vert\ 8)$ und $Q(0\ \vert\ 12)$
    • gesucht: $m$ und $b$

    Für die Steigung resultiert folgende Berechnung:

    $m=\frac{\Delta y}{\Delta x}=\frac{12-8}{0-(-2)}=\frac{4}{2}=2$

    Die berechnete Steigung und einer der Punkte werden nun in die Geradengleichung eingesetzt und der $y$-Achsenabschnitt $b$ wird ermittelt:

    $ \begin{array}{llll} 8 & = & 2\cdot (-2)+b & \\ 8 & = & -4+b & \vert +4 \\ 12 & = & b & \end{array} $

    Somit erhalten wir die Geradengleichung $y=2x+12$.