Geradengleichungen – Normalform (y=mx+b)
Es ist wichtig, die Normalform einer Geradengleichung $y = m\,x + b$ zu verstehen, um den Graphen richtig zu interpretieren. Die Steigung $m$ und der $y$-Achsenabschnitt $b$ sind entscheidend, um die Route des Marsrovers zu berechnen. Möchtest du mehr dazu erfahren? Dann schau das Video unten an! Alles Weitere findest du im folgenden Text.
- Normalform der Geradengleichung
- Was ist die Normalform einer Geradengleichung?
- Einfluss von $m$ und $b$ auf den Graphen der Funktion
- Ablesen der Normalform der Geradengleichung aus dem Koordinatensystem
- Rechnen mit der Normalform der Geradengleichung
- Normalform der Geradengleichung aufstellen
- In diesem Video über die Normalform der Geradengleichung
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Lineare Funktionen – Definition
Lineare Funktion – Wertetabelle
Lineare Funktionen – Funktionsgleichung mit einer Wertetabelle aufstellen
Lineare Funktionen zeichnen
Lineare Funktionen – Nullstellen berechnen
Lineare Funktionsgraphen – Punktprobe
Schnittpunkte linearer Funktionen
Steigung von Geraden – y=mx+b
Geradengleichungen – Normalform (y=mx+b)
Geradengleichungen ermitteln
Geradengleichung aus zwei Punkten bestimmen
Geradengleichungen in Punktsteigungsform
Der Anstieg
Parallele und orthogonale Geraden
Eigenschaften paralleler Geraden im Koordinatensystem
Geradengleichung und Graph bestimmen – Gegeben: Punkt, Nullstelle (Übungen)
Geradengleichungen – Normalform (y=mx+b) Übung
-
Stelle die gesuchte lineare Funktion auf.
TippsDie Normalform einer linearen Funktion lautet $y=mx+b$.
Dabei ist $m$ die Steigung und $b$ der $y$-Achsenabschnitt.
Der Marsrover verbraucht $\mathbf{2}$ Energieeinheiten pro Kilometer. Es handelt sich um eine Energieabnahme, also eine fallende Gerade.
Bevor der Marsrover losfährt, hat er genau $\mathbf{20}$ Energieeinheiten. Der Punkt $\mathbf{(0\ \vert\ 20)}$ liegt also auf der Geraden.
LösungGesucht ist die Normalform einer linearen Funktion. Diese lautet allgemein $y=mx+b$.
Dabei ist $\mathbf{m}$ die Steigung und $\mathbf{b}$ der $\mathbf{y}$-Achsenabschnitt.
Steigung
Die Steigung $m$ ist für eine steigende Gerade positiv und für eine fallende Gerade negativ.
Da der Marsrover pro Kilometer $\mathbf{2}$ Energieeinheiten verbraucht, handelt es sich um eine Energieabnahme, also eine fallende Gerade. Die gesuchte lineare Funktion hat demnach eine negative Steigung, nämlich $m=-2$.
$\mathbf{y}$-Achsenabschnitt
Außerdem ist bekannt, dass der Marsrover vor dem Losfahren $\mathbf{20}$ Energieeinheiten hat. Somit ist der Punkt $(0\ \vert\ 20)$ gegeben. Die $y$-Koordinate dieses Punktes ist der gesuchte $y$-Achsenabschnitt $b$.
Nun können wir die lineare Funktion in Normalform aufstellen. Diese lautet:
$y=-2x+20$
Um zu bestimmen, wie weit der Rover mit seiner übrigen Energie noch kommt, setzen wir für $y$ den Wert 0$ ein. Genau dann hat der Marsrover nämlich keine Energie mehr übrig. Wir erhalten:
$ \begin{array}{llll} 0 & = & -2x+20 & \vert +2x\\ 2x & = & 20 & \vert :(2) \\ x &=& 10 & \end{array} $
Der Marsrover kann mit seinen $20$ Energieeinheiten noch $10\ \text{km}$ zurücklegen und besitzt demzufolge für die geplante Mission genügend Energie.
-
Bestimme die gesuchte Geradengleichung.
TippsWenn zwei Punkte $P_1(x_1\ \vert\ y_1)$ und $P_2(x_2\ \vert\ y_2)$ einer Geraden bekannt sind, kannst du die Steigung wie folgt berechnen:
$m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}$
Wenn ein Punkt $P(x\ \vert\ y)$ und die Steigung $m$ einer Geraden bekannt sind, dann kannst du den $y$-Achsenabschnitt berechnen. Schaue dir das folgende Beispiel an:
Mit $m=2$ und $P(1\ \vert\ 0)$ erhalten wir diese Berechnung für den $y$-Achsenabschnitt:
$ \begin{array}{llll} 0 & = & 2\cdot 1+b & \\ 0 & = & 2+b & \vert -2 \\ -2 & = & b \end{array} $
Somit lautet die Geradengleichung in Normalform:
$y=2x-2$
LösungZunächst soll die Steigung zwischen den Punkten $S_1$ und $F$ sowie den Punkten $S_2$ und $F$ berechnet werden.
Da je zwei Punkte $P_1(x_1\ \vert\ y_1)$ und $P_2(x_2\ \vert\ y_2)$ einer Geraden bekannt sind, kann die Steigung wie folgt bestimmt werden:
$m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}$
Angewendet auf die Punkte $S_1(1\ \vert\ 0)$ und $F(7\ \vert\ 6)$ erhalten wir:
$m_1=\frac{\Delta y}{\Delta x}=\frac{6-0}{7-1}=\frac{6}{6}=1$
Angewendet auf die Punkte $S_2(5\ \vert\ 0)$ und $F(7\ \vert\ 6)$ erhalten wir:
$m_1=\frac{\Delta y}{\Delta x}=\frac{6-0}{7-5}=\frac{6}{2}=3$
Da der Marsrover lediglich eine maximale Steigung von $2,5$ überwinden kann, eliminieren wir die Route von dem Punkt $S_2$ zu dem Punkt $F$, da $3>2,5$.
Somit kennen wir die Steigung von $m=1$ für die gesuchte Geradengleichung in Normalform:
$y=1\cdot x+b$
Jetzt muss nur noch der $y$-Achsenabschnitt $b$ berechnet werden. Dafür setzen wir einen der bekannten Punkte in unsere Gleichung ein. Mit dem Punkt $S_1(1\ \vert\ 0)$ ergibt sich:
$ \begin{array}{llll} 0 & = & 1\cdot 1+b & \\ 0 & = & 1+b & \vert -1 \\ -1 & = & b \end{array} $
Die vollständige Geradengleichung in Normalform lautet:
${y=1\cdot x-1}$
-
Ermittle die Geradengleichung in Normalform für die abgebildeten Funktionsgraphen.
TippsDie Steigung $m$ ist wie folgt definiert:
$m=\frac{\Delta y}{\Delta x}$
Die Steigung des abgebildeten Funktionsgraphen lautet somit:
$m=\frac{1}{2}=0,5$
Der $y$-Achsenabschnitt entspricht der $y$-Koordinate des Schnittpunktes mit der $y$-Achse.
LösungDas Vorgehen soll anhand des erstens Beispiels verdeutlicht werden: Die Gerade verläuft durch den Ursprung $P(0\ \vert\ 0)$. Demnach ist der $y$-Achsenabschnitt $b=0$. Für die Steigung erhalten wir Folgendes:
$m=\frac{\Delta y}{\Delta x}=\frac{1}{2}=0,5$
Somit erhalten wir $y=0,5x$.
-
Leite die gesuchte lineare Funktion her.
TippsDie Steigung $m$ beschreibt den Kerosinverbrauch in Litern pro Kilometer.
Der $y$-Achsenabschnitt $b$ ist das verbrauchte Kerosin in Litern bei $0$ Kilometern zurückgelegter Strecke.
LösungDiese Angabe ist uns bekannt:
- Das Flugzeug verbraucht $700$ Liter Kerosin pro $100$ Kilometer.
Die Steigung ergibt sich durch:
$m=\frac{700}{100}=7$
Daraus resultiert folgende Geradengleichung in Normalform:
$y=7x+0$ bzw. $y=7x$
-
Beschreibe die Normalform einer linearen Funktion.
TippsDie Normalform einer linearen Funktion lautet in Worten:
$y$-Koordinate = Steigung $\cdot$ $x$-Koordinate + $y$-Achsenabschnitt
Wenn zwei Punkte einer Geraden bekannt sind, dann kann ihre Steigung wie folgt berechnet werden:
${m=\frac{y_2-y_1}{x_2-x_1}}$
LösungDie Normalform einer linearen Funktion lautet:
$y=mx+b$
Dabei ist $m$ die Steigung der Geraden und $b$ der $y$-Achsenabschnitt.
Wenn zwei Punkte $P_1(x_1\ \vert\ y_1)$ und $P_2(x_2\ \vert\ y_2)$ einer Geraden bekannt sind, dann kannst du die Steigung wie folgt berechnen:
$m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}$
In dem abgebildeten Beispiel mit $P(3\ \vert\ 2)$ und $Q(4\ \vert\ 5)$ resultiert diese Steigung:
$m=\frac{\Delta y}{\Delta x}=\frac{5-2}{4-3}=\frac{3}{1}=3$
-
Bestimme die jeweilige Geradengleichung.
TippsSchaue dir das folgende Beispiel an:
- gegeben: $m=2$ und $P(1\ \vert\ 2)$
- gesucht: $b$
Die Angaben eingesetzt in die Normalform der Geradengleichung liefern diese Berechnung:
$ \begin{array}{llll} 2 & = & 2\cdot 1+b & \\ 2 & = & 2+b & \vert -2 \\ 0 & = & b \end{array} $
Wenn zwei Punkte gegeben sind, dann kannst du die Steigung wie folgt bestimmen:
- gegeben: $P(1\ \vert\ 2)$ und $Q(5\ \vert\ 10)$
- gesucht: $m$
Für die Steigung resultiert diese Berechnung:
$m=\frac{\Delta y}{\Delta x}=\frac{10-2}{5-1}=\frac{8}{4}=2$
LösungDas Vorgehen soll anhand der ersten drei Beispiele verdeutlicht werden:
Beispiel 1
- gegeben: $m=2,5$ und $P(2\ \vert\ 7)$
- gesucht: $b$
Das Einsetzen der Angaben in die Normalform der Geradengleichung liefert:
$ \begin{array}{llll} 7 & = & 2,5\cdot 2+b & \\ 7 & = & 5+b & \vert -5 \\ 2 & = & b & \end{array} $
Somit erhalten wir die Geradengleichung $y=2,5x+2$.
Beispiel 2
- gegeben: $b=7$ und $P(2\ \vert\ 19)$
- gesucht: $m$
Das Einsetzen der Angaben in die Normalform der Geradengleichung liefert:
$ \begin{array}{llll} 19 & = & m\cdot 2+7 & \vert -7 \\ 12 & = & m\cdot 2 & \vert :2 \\ 6 & = & m & \end{array} $
Somit erhalten wir die Geradengleichung $y=6x+7$.
Beispiel 3
- gegeben: $P(-2\ \vert\ 8)$ und $Q(0\ \vert\ 12)$
- gesucht: $m$ und $b$
Für die Steigung resultiert folgende Berechnung:
$m=\frac{\Delta y}{\Delta x}=\frac{12-8}{0-(-2)}=\frac{4}{2}=2$
Die berechnete Steigung und einer der Punkte werden nun in die Geradengleichung eingesetzt und der $y$-Achsenabschnitt $b$ wird ermittelt:
$ \begin{array}{llll} 8 & = & 2\cdot (-2)+b & \\ 8 & = & -4+b & \vert +4 \\ 12 & = & b & \end{array} $
Somit erhalten wir die Geradengleichung $y=2x+12$.
9.626
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.310
Lernvideos
38.746
Übungen
33.712
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Satz des Pythagoras – Übungen
- Binomische Formeln
- Graphisches Ableiten – Übungen
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
5 Minuten verstehen
5 Minuten üben
2 Minuten Fragen stellen