Geradengleichungen ermitteln
In dem Text geht es darum, wie man die Geradengleichung zwischen zwei Punkten bestimmt. Es wird erklärt, wie man die Gleichung einer Geraden zwischen zwei Städten aufstellt, die Steigung und den $y$-Achsenabschnitt mithilfe der Normalform berechnet. Interessiert? All das und mehr findest du im folgenden Text!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Geradengleichungen ermitteln Übung
-
Gib die Gleichung der Geraden an.
TippsSind zwei Punkte $P_1(x_1 \vert y_1)$ und $P_2(x_2 \vert y_2)$ gegeben, kannst du zunächst die Steigung $m$ der Geraden durch diese Punkte mit der Steigungsformel
$m=\frac{y_2-y_1}{x_2-x_1}$
bestimmen.
Wenn du die Steigung bestimmt hast, kannst du die Steigung und einen beliebigen Punkt auf der Geraden in die allgemeine Geradengleichung einsetzten:
$y=mx+b$
Dann kannst du diese Gleichung nach der letzten Unbekannten $b$, also dem $y$-Achsenabschnitt, auflösen.
LösungDie Rechnung wird wie folgt durchgeführt:
Zuerst verwendet er die Steigungsformel: $m=\dfrac{y_2-y_1}{x_2-x_1}$
Sind zwei Punkte $P_1(x_1 \vert y_1)$ und $P_2(x_2 \vert y_2)$ gegeben, kannst du die Steigung $m$ der Geraden durch diese Punkte mit der Steigungsformel $m=\frac{y_2-y_1}{x_2-x_1}$ bestimmen.
Damit erhält er folgende Steigung: $m=\dfrac{8-3}{12-2}=\dfrac{1}{2}$
Die Steigung und den Punkt $P$ setzt er in folgende allgemeine Geradengleichung ein: $y=mx+b$
Somit erhält er folgende Gleichung: $3=\dfrac{1}{2} \cdot 2+b$
Wenn du die Steigung bestimmt hast, kannst du die Steigung und einen beliebigen Punkt auf der Geraden in die allgemeine Geradengleichung einsetzten. Dann kannst du diese Gleichung nach der letzten Unbekannten $b$ auflösen. Damit hast du beide Konstanten $m$ und $b$ der Geradengleichung bestimmt und kannst diese angeben.
Nach dem Umstellen der Gleichung erhält er folgenden $y$-Achsenabschnitt: $b=2$
Die Geradengleichung lautet also: $y=\dfrac{1}{2}x+2$
-
Bestimme eine parallele und senkrechte Gerade.
TippsImmer wenn in einer Gleichung nur noch eine unbekannte Variable steht, kannst du die Unbekannte durch Einsetzten der bekannten Variablen bestimmen.
Die Normalform einer Geradengleichung lautet:
$y=mx+b$
Dabei ist $m$ die Steigung der Geraden und $b$ der $y$-Achsenabschnitt.
LösungDen Lückentext kannst du wie folgt vervollständigen:
Parallele Geraden
Parallele Geraden haben die gleiche Steigung $m$. Um eine Parallele zur Geraden $y=\frac{1}{2}x+2$ durch einen gegebenen Punkt zu ermitteln, muss Palmer also nur noch den $y$-Achsenabschnitt $b$ der parallelen Geraden bestimmen. Diesen kann er bestimmen, indem er den Punkt $P_2(2 \vert 4)$ und die Steigung $m=\frac{1}{2}$ in die allgemeine Geradengleichung einsetzt.
- Immer wenn in einer Gleichung nur noch eine unbekannte Variable steht, kannst du die Unbekannte durch Einsetzten der bekannten Variablen bestimmen. Hier erhältst du durch Einsetzen und Umstellen $b=3$.
Senkrechte Geraden
Die Steigungen $m_1$ und $m_2$ zweier senkrechter Geraden erfüllen folgende Gleichung: $m_1 \cdot m_2=-1$
- Wenn du eine Gerade gegeben hast, kannst du mit dieser Gleichung die Steigung einer dazu senkrechten Geraden wie folgt bestimmen:
Den $y$-Achsenabschnitt bestimmt er durch Einsetzen der Steigung $m_2$ und des Punktes $B(6 \vert 5)$.
- Auch hier kannst du die letzte Unbekannte durch Einsetzen der bekannten Größen bestimmen. Damit erhältst du $b=17$.
-
Erschließe die Eigenschaften der Geraden.
TippsDie Gerade durch zwei Punkte kannst du bestimmen, indem du mithilfe der Steigungsformel die Steigung wie folgt berechnest:
- $m=\frac{y_2-y_1}{x_2-x_1}$
Die Steigungen senkrechter Geraden gehorchen der Gleichung:
- $m_1 \cdot m_2=-1$
LösungGerade durch $A(3 \vert 3)$ und $B(4 \vert 5)$
Die Gerade durch die Punkte $A(3 \vert 3)$ und $B(4 \vert 5)$ kannst du bestimmen, indem du mithilfe der Steigungsformel zunächst die Steigung berechnest und anschließend die Steigung sowie einen der beiden Punkte in die allgemeine Geradengleichung einsetzt. Dann erhältst du:
$m=\frac{y_2-y_1}{x_2-x_1}=\frac{5-3}{4-3}=\frac 21=2$
Dann folgt:
$3=2\cdot 3+b ~ \rightarrow ~ b=-3$
Die Geradengleichung lautet also:
$y=2x-3$Senkrecht aufeinander stehende Geraden
Die Steigungen senkrechter Geraden gehorchen der Gleichung $m_1 \cdot m_2=-1$. Diese Eigenschaft trifft auf folgende Geraden zu:
$y=3x+5$
$y=-\frac{1}{3}x-3$Parallele Geraden
Alle parallelen Geraden haben die gleiche Steigung. Diese Eigenschaft trifft auf folgende Geraden zu:
$y=8x-\frac{1}{2}$
$y=8x+6$
$y=8x-6$ -
Ermittle die Geradengleichung.
TippsDie Steigung einer Geraden durch zwei Punkte kannst du mit der Steigungsformel bestimmen:
$m=\frac{y_2-y_1}{x_2-x_1}$
Parallele Geraden haben die gleiche Steigung.
LösungGeradengleichung 1
Die Gerade, die durch die Punkte $A(0\vert -1)$ und $B(1\vert 2)$ verläuft, kannst du bestimmen, indem du die Steigung mit der Steigungsformel wie folgt bestimmst:
- $m=\frac{y_2-y_1}{x_2-x_1}=\frac{2-(-1)}{1-0}= 3$
- $-1=3 \cdot 0 +b ~\Rightarrow b=-1$
- $y=3x-1$
Die zu $y=4x-3$ senkrechte Gerade durch den Punkt $A(0\vert 1)$ bestimmst du, indem du zunächst die Steigung ermittelst:
- $m_2=-\frac{1}{m_1}=-\frac{1}{4}$
- $1=-\frac 14\cdot 0+b ~\Rightarrow b=1$
- $y=-\frac 14x+1$
Wir suchen die Gerade, welche parallel zu $y=5x-1$ durch den Punkt $A(0\vert -3)$ verläuft. Parallele Geraden haben die gleiche Steigung. Somit können wir in die allgemeine Geradengleichung die Steigung $m=5$ und den Punkt $A$ einsetzen und den $y$-Achsenabschnitt berechnen:
- $-3=5\cdot 0+b ~\Rightarrow b=-3$
- $y=5x+3$
Wir suchen die Gerade, welche durch die Punkte $A(-1\vert -4)$ und $B(1\vert 10)$ verläuft. Hier gehen wir genauso vor, wie bei der ersten Geradengleichung. Wir berechnen mit der Steigungsformel zunächst die Steigung:
- $m=\frac{y_2-y_1}{x_2-x_1}=\frac{10-(-4)}{1-(-1)}= \frac{14}{2}=7$
- $-4=7 \cdot (-1) +b ~\Rightarrow b=3$
- $y=7x+3$
-
Bestimme die korrekten Aussagen zur Bestimmung von Geradengleichungen.
TippsParallele Geraden haben an jeder Stelle den gleichen Abstand zueinander.
Die Steigung einer Geraden durch zwei Punkte kannst du mithilfe einer Formel bestimmen. Danach kannst du einen der beiden Punkte sowie die ermittelte Steigung in die allgemeine Geradengleichung einsetzen, um den $y$-Achsenabschnitt zu bestimmen.
LösungDiese Aussagen sind falsch:
„Die Steigungen $m_1$ und $m_2$ zweier senkrechter Geraden erfüllen die Gleichung: $m_1 \cdot m_2=1$“
- Die Steigungen erfüllen die Gleichung $m_1 \cdot m_2=-1$
- Die Steigungen $m_1$ und $m_2$ zweier paralleler Geraden sind gleich: $m_1=m_2$
„Du kannst eine Gerade durch zwei gegebene Punkte $P$ und $U$ im Koordinatensystem aufstellen.“
- Die Steigung $m$ einer Geraden durch zwei Punkte kannst du mithilfe der Steigungsformel bestimmen. Danach kannst du einen der beiden Punkte sowie die ermittelte Steigung in die allgemeine Geradengleichung $y=mx+b$ einsetzen, um den $y$-Achsenabschnitt $b$ zu bestimmen.
„Ist eine Gerade in Normalform angegeben, steht sie in der Form: $y=mx+b$“
-
Erarbeite die Lagebeziehungen von Geraden.
TippsSo sehen die drei Geraden in einem Koordinatensystem aus.
LösungSo kannst du den Text vervollständigen:
Um eine Gerade $g_1$ durch die Punkte $A(0 \vert 3)$ und $B(1 \vert 0)$ zu bestimmen, wenden wir die Steigungsformel an. Dann erhalten wir:
$m=-3$.
Den $y$-Achsenabschnitt erhalten wir durch Einsetzen des Punktes $B$ in die allgemeine Geradengleichung $y=m x+c$: (...)
Damit erhalten wir: $c=3$.
Die Geradengleichung lautet also:
$y=-3x+3$
- Wie gewohnt bestimmen wir eine Geradengleichung aus zwei Punkten $A$ und $B$.
$m_1 \cdot m_2=-1$
Mit $m_1=-3$ erhalten wir:
$m_2=${$\frac{1}{3}$}.
Den $y$-Achsenabschnitt erhalten wir wieder durch einsetzen:
Das ergibt: $c=5$.
Also lautete die Geradengleichung für $g_2$:
$y=\frac{1}{3}x+5$
Zuletzt bestimmen wir eine weitere Gerade $g_3$ durch den Punkt $C(0 \vert 5)$, die senkrecht zur Geraden $g_2$ verläuft. Dazu gehen wir wie gewohnt vor:
Hier lautet die Gleichung für die Steigung senkrechter Geraden:
$m_2 \cdot m_3=-1$
Damit ergibt sich:
$m_3=3$.
Der $y$-Achsenabschnitt ergibt:
$c=5$.
Somit erhalten wir die Geradengleichung $g_3$:
$y=3x+5$
- Auch das Vorgehen zum Bestimmen senkrechter Geraden ist bekannt.
Das liegt daran, dass die Gerade $g_2$ senkrecht zu $g_1$ und $g_3$ ist. Dann müssen die beiden Geraden parallel sein.
8.988
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.715
Lernvideos
37.358
Übungen
33.686
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Brüche multiplizieren – Übungen
- Potenzgesetze
- Distributivgesetz
- Bruchgleichungen lösen – Übungen
- Flächeninhalt Dreieck
- Rationale Zahlen