Winkelsumme in Vierecken
Erfahre, warum die Winkelsumme in einem Dreieck $180^\circ$ und in einem Viereck $360^\circ$ beträgt. Wir erklären die Benennung der Punkte, Seiten und Winkel anhand von Beispielen und bieten Übungsaufgaben. Interessiert? All das und noch mehr findest du im folgenden Text!
- Winkelsummen zur Vermessung von Straßenkreuzungen
- Größen am Dreieck und Viereck
- Beschriftung von Dreiecken
- Beschriftung von Vierecken

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Aufbau von Vierecken

Arten von Vierecken

Haus der Vierecke – Einführung

Die Raute

Das Parallelogramm

Das Trapez

Das Drachenviereck

Vierecke identifizieren

Höhen in Vierecken

Flächeninhalt und Umfang von Quadraten

Fläche und Umfang eines Rechtecks

Umfang von Rechtecken

Flächeninhalt von Rechtecken

Flächeninhalt von aus Rechtecken zusammengesetzten Figuren

Flächeninhalt von zusammengesetzten Rechtecken

Quadrate und Rechtecke konstruieren

Parallelogramme zeichnen

Winkelsumme in Vierecken

Flächeninhalt von zusammengesetzten Flächen

Umfang eines Rechtecks – Übung

Winkelsummen in Dreiecken und Vierecken – Übung

Innenwinkel im Parallelogramm
Winkelsumme in Vierecken Übung
-
Gib die Aussage des Innenwinkelsummensatzes für Vierecke wieder.
TippsBeispiel für die Innenwinkel eines Vierecks:
- $\alpha = 90^\circ$
- $\beta = 125^\circ$
- $\gamma = 45^\circ$
- $\delta = 100^\circ$
Der Begriff Innenwinkelsummensatz verrät dir, welche Rechenoperation angewendet wird.
LösungDie Innenwinkel im Viereck werden mit griechischen Buchstaben benannt:
$\alpha,~ \beta,~ \gamma$ und $\delta$.Die Summe aller Innenwinkel ist in jedem Viereck gleich groß.
Der Innenwinkelsummensatz besagt, dass die Summe der Innenwinkel im Viereck $\color{#99CC00}{\mathbf{360^\circ}}$ beträgt.
Wir schreiben dies als Formel:
$\color{#99CC00}{\mathbf{\alpha + \beta + \gamma + \delta = 360^\circ}}$
Alle Winkel zusammen ergeben also $360^\circ$.
Wir betrachten dazu noch ein Beispiel:
In einem Viereck sind die Innenwinkel:- $\alpha = 90^\circ$
- $\beta = 125^\circ$
- $\gamma = 45^\circ$
- $\delta = 100^\circ$
$ 90^\circ+ 125^\circ+ 45^\circ+ 100^\circ = 360^\circ$
...und erkennen, dass die Summe der Innenwinkel wie erwartet $360^\circ$ ergibt. -
Beschreibe, wie der Innenwinkelsummensatz für Vierecke bewiesen werden kann.
TippsBeginne damit, das Dreieck durch eine Diagonale in zwei Dreiecke zu teilen, wie abgebildet.
Die Innenwinkelsumme im Dreieck beträgt $180^\circ$.
Als letzten Schritt musst du die erhaltene Gleichung zusammenfassen.
LösungUm den Innenwinkelsummensatz für Vierecke zu beweisen, betrachten wir ein beliebiges allgemeines Viereck mit den Eckpunkten $A$, $B$, $C$ und $D$.
Wir wollen zeigen, dass die Summe der Innenwinkel $\alpha$, $\beta$, $\gamma$ und $\delta$ genau $360^\circ$ beträgt.Dazu gehen wir wie folgt vor:
1.$~$Wir zeichnen eine Diagonale zwischen den Eckpunkgen $A$ und $C$ ein.
Die Diagonale teilt die Winkel $\alpha$ und $\gamma$ jeweils in zwei kleinere Winkel. Wir nennen diese $\alpha_1$ und $\alpha_2$ mit ${\alpha_1 + \alpha_2 = \alpha}$ beziehungsweise $\gamma_1$ und $\gamma_2$ mit ${\gamma_1 + \gamma_2 = \gamma}$.
2.$~$Das Viereck wird durch die Diagonale in zwei Dreiecke geteilt: die Dreiecke $ABC$ und $ACD$.
Wir wissen bereits, dass die Innenwinkelsumme im Dreieck $180^\circ$ beträgt. Damit ergeben sich für die beiden Dreiecke die beiden Gleichungen:
${\alpha_2 + \beta + \gamma_2 = 180^\circ}~$ und $~{\alpha_1 + \gamma_1 + \delta = 180^\circ}$
3.$~$Wir fügen diese beiden Gleichungen zusammen und erhalten:
${\alpha_2 + \beta + \gamma_2 + \alpha_1 + \gamma_1 + \delta = 180^\circ + 180^\circ}$
4.$~$Diese Gleichung können wir noch sortieren:
${\alpha_1 + \alpha_2 + \beta + \gamma_1 + \gamma_2 + \delta = 360^\circ}$
5.$~$Und im letzten Schritt zum Innenwinkelsummensatz für Vierecke zusammenfassen:
$\alpha + \beta + \gamma + \delta = 360^\circ$Die Innenwinkelsumme beträgt im Viereck $360^\circ$.
Zusammengefasst erhalten wir folgende korrekte Reihenfolge:
1.$~$Wir betrachten das Viereck $ABCD$ und zeichnen eine Diagonale zwischen $A$ und $C$ ein. Diese teilt:
$\alpha_1 + \alpha_2 = \alpha \quad$ und $\quad \gamma_1 + \gamma_2 = \gamma$
2.$~$Für die beiden entstandenen Dreiecke $ABC$ und $ACD$ gilt:
${\alpha_2 + \beta + \gamma_2 = 180^\circ}~$ und $~{\alpha_1 + \gamma_1 + \delta = 180^\circ}$
3.$~$Wir setzen diese Gleichungen zu einer Gleichung zusammen:
${\alpha_2 + \beta + \gamma_2 + \alpha_1 + \gamma_1 + \delta = 180^\circ + 180^\circ}$
4.$~$Wir sortieren:
${\alpha_1 + \alpha_2 + \beta + \gamma_1 + \gamma_2 + \delta = 360^\circ}$
5.$~$Und fassen zusammen:
$\alpha + \beta + \gamma + \delta = 360^\circ$
-
Überprüfe, ob die vier gegebenen Winkel die Innenwinkel eines Vierecks sein können.
TippsHier siehst du ein Beispiel für ein Viereck mit den eingetragenen vier Innenwinkeln.
Bilde die Summe der vier gegebenen Winkel.
LösungDamit die vier gegebenen Winkel ein Viereck bilden können, muss der Innenwinkelsummensatz erfüllt sein.
Der Innenwinkelsummensatz besagt, dass die Summe der Innenwinkel im Viereck $360^\circ$ beträgt.
$\alpha + \beta + \gamma + \delta = 360^\circ$Wir bilden also jeweils die Summe der vier gegebenen Winkel, und überprüfen, ob diese $360^\circ$ ergibt:
Viereck 1:
$\alpha + \beta + \gamma + \delta = 126^\circ + 34^\circ + 112^\circ + 78^\circ = 350^\circ \neq 360^\circ$
$\implies$ kein ViereckViereck 2:
$\alpha + \beta + \gamma + \delta = 90^\circ + 67^\circ + 103^\circ + 100^\circ = 360^\circ$
$\implies$ ViereckViereck 3:
$\alpha + \beta + \gamma + \delta = 78^\circ + 95^\circ + 86^\circ + 101^\circ = 360^\circ$
$\implies$ ViereckViereck 4:
$\alpha + \beta + \gamma + \delta = 66^\circ + 78^\circ + 19^\circ + 101^\circ = 264^\circ \neq 360^\circ$
$\implies$ kein ViereckViereck 5:
$\alpha + \beta + \gamma + \delta = 90^\circ + 90^\circ + 90^\circ + 90^\circ = 360^\circ$
$\implies$ ViereckViereck 6:
$\alpha + \beta + \gamma + \delta = 77^\circ + 115^\circ + 59^\circ + 108^\circ = 359^\circ \neq 360^\circ$
$\implies$ kein Viereck -
Berechne den fehlenden Winkel $\beta$ der Vierecke.
TippsDu kannst mit dem Innenwinkelsummensatz für Viereck einen fehlenden Winkel in einem Viereck berechnen.
Setze die gegebenen Winkel in die Gleichung $\alpha + \beta + \gamma + \delta = 360^\circ$ ein und stelle nach dem gesuchten Winkel um.
LösungDer Innenwinkelsummensatz besagt, dass die Summe der Innenwinkel im Viereck $360^\circ$ beträgt.
$\alpha + \beta + \gamma + \delta = 360^\circ$Um den fehlenden Winkel $\beta$ zu berechnen, können wir von $360^\circ$ die drei bekannten Winkel abziehen und erhalten so den gesuchten Winkel:
$\beta = 360^\circ - \alpha - \gamma -\delta$Wir führen diese Berechnung für die vier Vierecke durch:
Erstes Viereck:
$\alpha = 68^\circ \,\, \gamma = 123^\circ \,\, \delta = 97^\circ$
$\beta = 360^\circ - 68^\circ -123^\circ -97^\circ =72^\circ $Zweites Viereck:
$\alpha = 131^\circ \,\, \gamma = 51^\circ \,\,\delta = 47^\circ$
$\beta = 360^\circ - 131^\circ -51^\circ -47^\circ =131^\circ $Drittes Viereck:
$\alpha = 106^\circ \,\, \gamma = 98^\circ \,\, \delta = 62^\circ$
$\beta = 360^\circ - 106^\circ -98^\circ -62^\circ =94^\circ $Viertes Viereck:
$\alpha = 99^\circ \,\, \gamma = 58^\circ \,\, \delta =116^\circ$
$\beta = 360^\circ - 99^\circ -58^\circ -116^\circ =87^\circ $ -
Benenne die Innenwinkel des abgebildeten Vierecks.
TippsDie griechischen Buchstaben entsprechen den Großbuchstaben der Ecken.
Winkelbezeichnungen:
- $\alpha$: $~$ Alpha
- $\beta$: $~$ Beta
- $\gamma$: $~$ Gamma
- $\delta$: $~$ Delta
LösungBei der Beschriftung eines Vierecks gehen wir wie folgt vor:
Beschriftung der Ecken:
Wir beginnen links unten und beschriften die Ecken dann gegen den Uhrzeigersinn in alphabetischer Reihenfolge mit Großbuchstaben:
$A \quad - \quad B \quad - \quad C\quad - \quad D$Beschriftung der Innenwinkel:
Wir beschriften die Innenwinkel mit griechischen Buchstaben. Die Buchstaben entsprechen den Großbuchstaben der Ecken:
$\alpha \quad - \quad \beta \quad - \quad \gamma \quad - \quad \delta$
Wir sprechen diese wie folgt:- $\alpha$: $~$ Alpha
- $\beta$: $~$ Beta
- $\gamma$: $~$ Gamma
- $\delta$: $~$ Delta
-
Ermittle die fehlenden Winkel der Vierecke.
TippsBeim Parallelogramm sind gegenüberliegende Seiten gleich lang und parallel. Außerdem sind gegenüberliegende Winkel gleich groß.
Beim Drachenviereck gibt es zwei Paare benachbarter gleich langer Seiten und ein Paar gegenüberliegender gleich großer Winkel.
LösungWir wissen, dass die Summe der Innenwinkel im Viereck $360^\circ$ beträgt:
$\alpha + \beta + \gamma + \delta = 360^\circ$In unserem Fall handelt es sich um spezielle Vierecke:
Das Parallelogramm:
Gegenüberliegende Seiten sind gleich lang und parallel und gegenüberliegende Winkel sind gleich groß.
Wir wissen also, dass $\alpha = \gamma = 110^\circ$ //. Entsprechend dem Winkelsummensatz bleiben $360^\circ - 110^\circ - 110^\circ = 140^\circ$ für die beiden verbleibenden Winkel:
$\beta = \delta = 140^\circ :2 = 70^\circ$
Insgesamt erhalten wir also die Winkel:$\alpha = 110^\circ$
$\beta=\color{#99CC00}{\mathbf{70^\circ}}$
$\gamma=\color{#99CC00}{\mathbf{110^\circ}}$
$\delta=\color{#99CC00}{\mathbf{70^\circ}}$Das Drachenviereck:
Es gibt zwei Paare benachbarter gleich langer Seiten und ein Paar gegenüberliegender gleich großer Winkel.
Es gilt also $\beta = \delta = 100^\circ$
Den vierten fehlenden Winkel können wir über den Winkelsummensatz berechnen:
$\gamma = 360^\circ - 120 ^\circ - 100^\circ - 100^\circ = 40^\circ$
Insgesamt erhalten wir also die Winkel:$\alpha = 120^\circ$
$\beta= 100^\circ$
$\gamma=\color{#99CC00}{\mathbf{40^\circ}}$
$\delta=\color{#99CC00}{\mathbf{100^\circ}}$
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt