30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Terme und Termumformungen 04:01 min

Textversion des Videos

Transkript Terme und Termumformungen

Der erfolglose Pirat Johnny Rotbart und sein treuer Begleiter Polly sind wieder auf Schatzsuche. Sie haben eine Landkarte mit mehreren Inseln, auf denen Schätze vergraben sein sollen. Davon steuern sie die erste dieser Inseln an und finden tatsächlich einen Schatz! Schauen wir doch mal, was sich in dieser Schatzkiste so befindet. Das ist ja nicht so eine große Ausbeute. Aber helfen wir Johnny doch einmal dabei, diesen Schatz zu ordnen, indem wir Summen als Produkte schreiben. Johnny Rotbart hat in der Schatzkiste zunächst einen Rubin, dann noch einen und dann zwei Rubine, die zusammen liegen, gefunden. Außerdem hat er noch drei weitere Rubine in der Truhe gefunden. Verwenden wir die Variable r für die Rubine, können wir das als Summe durch r + r + 2r + r + 3r schreiben. Summen aus gleichen Summanden, das heißt Summanden mit der gleichen Variablen, können wir noch weiter zusammenfassen. So können wir r + r, zu 2 mal r, also 2r schreiben. Dieses r können wir auch als 1r schreiben. Nun können wir den Term noch weiter zusammenfassen, und zwar mithilfe des Distributivgesetzes. Wir addieren die Koeffizienten, hier also 2 + 2 + 1 + 3 und behalten die Variable bei und erhalten insgesamt 8r. Für die Smaragde, für die wir die Variable s verwenden, können wir diesen Term aufstellen. Auch hier können wir die Summe wieder mithilfe des Distributivgesetzes in ein Produkt umwandeln. Wir haben dann, in Klammern 3 + 1 +1 + 2 mal s und das sind 7s. Naja, mit diesem Schatz wird Johnny wohl noch kein Ruhm erlangen, weiter gehts! Oh in dieser Schatzkiste ist ja schon ein bisschen mehr. Insgesamt sind in dieser Schatzkiste 12 Rubine und 15 Smaragde. Wollen wir dies mit den Rubinen und Smaragden zusammenrechnen, die Johnny und Polly auf der letzten Insel gefunden haben, so können wir 8 r plus 7s plus 12r plus 15s rechnen. Gleichartige Terme können zusammengefasst werden, wir können also 8 r mit 12 r , sowie 7s und 15s zusammenfassen und erhalten 20r + 22s. Das funktioniert übrigens genauso bei Differenzen. So könntest du 12r minus 8r zu 4r zusammenfassen. Man kann auch Terme wie diesen hier vereinfachen. Diesen Vorgang nennt man dann ausmultiplizieren. So wird jeder dieser Summanden in der Klammer einzeln mit dem Faktor vor der Klammer multipliziert. Wir rechnen also 2 mal 3x und 2 mal 7y und erhalten 6x plus 14y. Haben wir einen negativen Faktor vor der Klammer, ist es wichtig darauf zu achten, dass sich die Vorzeichen der Summanden beim Ausmultiplizieren ändern. Minus 2 mal 3x, sind minus 6x und minus 2 mal 7y, sind minus 14y. Ist der Faktor vor der Klammer selbst auch ein Ausdruck in einer Klammer, gehen wir wie folgt vor: Wir multiplizieren alle Summanden in der ersten Klammer, mit allen Summanden in der zweiten Klammer. Wir rechnen also 3 mal x, plus 4 mal x und 3 mal y, plus 4 mal y. Dann können wir auch hier gleichartige Terme zusammenfassen. Bevor wir nochmal schauen, wie viele Schätze Johnny nun eigentlich gefunden hat, fassen wir zusammen. Summen gleicher Summanden können wir als Produkte schreiben. Außerdem können gleichartige Terme zusammengefasst werden. Der Vorgang des Ausmultiplizierens, ist das Auflösen von Klammern. Auch dann können gleichartige Terme zusammengefasst werden. Und Johnny? Hm, hat er denn gar nichts mit seinem Schatz gemacht?

5 Kommentare
  1. Kurz und knapp aber sehr informativ .
    gefällt mir .

    Von Bozica Herendic, vor etwa 9 Stunden
  2. okkkk

    Von Itslearning Nutzer 2535 400158, vor 5 Tagen
  3. bester video

    Von Champions Eros, vor etwa einem Monat
  4. Vol_die_Rapperbande

    Von Yiren Y., vor etwa einem Monat
  5. Voll geil !!!
    Respekt.

    Von Tuan Long T., vor etwa 2 Monaten

Terme und Termumformungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Terme und Termumformungen kannst du es wiederholen und üben.

  • Bestimme die korrekten Aussagen zu Termen und Termumformungen.

    Tipps

    Dieser Term wurde korrekt ausmultipliziert:

    $2(3x+7y)=2 \cdot 3x + 2 \cdot 7y=6x+14y$

    Dieser Term kann nicht weiter zusammengefasst werden:

    $6x+14y$

    Lösung

    Diese Aussagen sind falsch:

    „Du kannst Terme, in denen die gleichen Variablen vorkommen, zwar addieren, aber niemals subtrahieren.“

    • Gleichartige Terme kannst du zusammenfassen, indem du sie addierst oder subtrahierst. Beachte dabei die Vorzeichen der Terme.
    „Multiplizierst du eine positive Zahl mit einer negativen Zahl, wird das Ergebnis positiv.“

    • Beim Multiplizieren zweier Zahlen mit unterschiedlichen Vorzeichen wird das Ergebnis immer negativ.
    Diese Aussagen sind richtig:

    „Du kannst nur gleichartige Terme (also Terme, die die gleiche Variable enthalten) zusammenfassen.“

    „Mithilfe des Distributivgesetzes können Summanden mit gleichen Variablen oder Zahlen noch weiter zusammengefasst werden.“

    • Du kannst das Distributivgesetz anwenden, um gemeinsame Zahlen oder Variablen von Summanden (aber auch von Subtrahenden und Minuenden) auszuklammern. Es ist zum Beispiel: $2r+2r+1r+3r=(2+2+1+3)\cdot r$
    „Beim Ausmultiplizieren wird jeder Summand in der Klammer mit dem Faktor vor der Klammer multipliziert.“

  • Bestimme die fehlenden Summanden.

    Tipps

    Multipliziere den Term aus und vereinfache ihn anschließend.

    Beachte, dass du jeden Summanden der einen Klammer einzeln mit jedem Summanden der anderen Klammer multiplizieren musst.

    Lösung

    Du kannst die Lücken füllen, indem du den Term ausmultiplizierst und anschließend vereinfachst. Beachte, dass du jeden Summanden der einen Klammer einzeln mit jedem Summanden der anderen Klammer multiplizieren musst. So erhältst du:

    $\begin{array}{ll} (3+4)(x+y) &= 3x + 4x + 3y+4y\\ &= 7x + 7y\\ \end{array}$

  • Beschreibe das Rechnen mit Termen und ihren Umformungen.

    Tipps

    Mit dem Distributivgesetz kannst du Faktoren, die in allen Summanden vorkommen, ausklammern und anschließend die Zahlenwerte zusammenrechnen. Sieh dir folgendes Beispiel an:

    $2a+3a=(2+3)\cdot a= 5 a$

    Besteht ein Term aus Summanden mit unterschiedlichen Variablen, kannst du nur Terme zusammenfassen, die dieselbe Variable enthalten.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Auf der ersten Insel beschreibt er die Anzahl der Rubine durch folgenden Term:

    $r+r+2r+r+3r$

    Hier schreibt er zuerst $1r$ statt $r$.“

    • Dies verändert den Wert des Terms nicht. Es wird so aber einfacher die Summanden zu berechnen.
    „$=1r+1r+2r+1r+3r$

    Dann wendet er das Distributivgesetz an, um die gemeinsame Variable der Summanden wie folgt auszuklammern:

    $(1+1+2+1+3) \cdot r=8r$“

    • Mit dem Distributivgesetz kannst du Faktoren, die in allen Summanden vorkommen, ausklammern und anschließend die Zahlenwerte zusammenrechnen.
    „Die Anzahl der Smaragde gibt er durch folgenden Term an:

    $3s+1s+1s+2s$

    Auch diesen klammert er mit dem Distributivgesetz wie folgt aus:

    $(3+1+1+2)\cdot s=7s$

    Dazu stellt er folgenden Term auf:

    $8r+7s+12r+15s$

    Und vereinfacht ihn:

    $20r+22s$“

    • Besteht ein Term aus Summanden mit unterschiedlichen Variablen, kannst du nur Terme zusammenfassen, die dieselbe Variable enthalten.
  • Leite den Term ab und vereinfache ihn.

    Tipps

    Die Fläche eines Rechtecks berechnest du, indem du die beiden Seitenlängen multiplizierst.

    Da die Länge des ersten Feldes mit $x$ bezeichnet wird und das zweite Feld $10~\text{m}$ kürzer ist, können wir die Länge des zweiten Feldes durch $x-10$ ausdrücken.

    Zwei Klammern multiplizierst du, indem du jeden Summanden der ersten Klammer mit jedem Summanden der zweiten Klammer multiplizierst. Anschließend kannst du gleichnamige Terme zusammenfassen.

    Beispiel:

    $\begin{array}{ll} (2x + 3) \cdot (x + 1) &=& 2x \cdot x + 2x \cdot 1 + 3 \cdot x + 3 \cdot 1 \\\ &=& 2x^2 + 2x +3x+3 \\ &=& 2x^2 + 5x +3\\ \end{array}$

    Lösung

    So kannst du die Rechnung vervollständigen:

    „Die Länge des ersten Feldes beträgt: $x$

    Die Breite des ersten Feldes beträgt: $y$

    Die Fläche beträgt: $A_1=x \cdot y$“

    • Die Fläche eines Rechtecks berechnest du, indem du die beiden Seitenlängen multiplizierst.
    „Die Länge des zweiten Feldes beträgt: $x-10$“

    • Da die Länge des ersten Feldes mit $x$ bezeichnet wird und das zweite Feld $10~\text{m}$ kürzer ist, können wir es so ausdrücken.
    „Die Breite des zweiten Feldes beträgt: $y+20$

    Die Fläche beträgt: $A_2=(x -10) \cdot (y+20)$“

    • Beachte hier die Klammern. Ohne sie wäre die Rechnung nicht korrekt.
    „Also beträgt die Gesamtfläche:

    $A_{Ges}=A_1+A_2=xy+(x -10) \cdot (y+20)$“

    • Die Gesamtfläche bestimmen wir, indem wir die beiden Teilflächen addieren.
    „Das vereinfacht sie zu:

    $=xy+ xy + 20x-10y-200=2xy+20x-10y-200$“

    • Hier musst du den Term zuerst ausmultiplizieren und anschließend vereinfachen. Beachte die Vorzeichen der Ergebnisse.
  • Ermittle die vereinfachte Form der Terme.

    Tipps

    Um die Lösung zu bestimmen, fasst du alle Summanden, die die gleiche Variable enthalten, mit dem Distributivgesetz zusammen.

    Steht vor einer Variablen kein Faktor, kannst du eine $1$ davor schreiben.

    Lösung

    Um die Lösung zu bestimmen, fasst du alle Summanden, die die gleiche Variable enthalten, mit dem Distributivgesetz zusammen. Steht vor einer Variablen kein Faktor, kannst du eine $1$ davor schreiben. So erhältst du:

    • $2t+c+5c+t=(2+1)t+ (5+1)c=3t+6c$
    • $t+c+2c+4c+t=(1+1)t+ (1+2+4)c=2t+7c$
    • $t+c+t+1c+2t+4c+t=(1+1+2+1)t+ (1+1+4)c=5t+6c$
    • $4t+4c+t+3c=(4+1)t+ (4+3)c=5t+7c$
  • Ermittle die ausmultiplizierte Form der Terme.

    Tipps

    Bei den ersten beiden Termen musst du alle Einträge in der Klammer mit dem Faktor vor der Klammer multiplizieren.

    Bei den letzten beiden Termen musst du jeweils beide Einträge der ersten Klammer mit dem Faktor hinter der Klammer multiplizieren. Anschließend kannst du gleichartige Terme zusammenfassen.

    Lösung

    Du kannst die Lücken füllen, indem du die Terme ausmultiplizierst und vereinfachst. Bei den ersten beiden Termen musst du alle Einträge in der Klammer mit dem Faktor vor der Klammer multiplizieren. So erhältst du:

    • $2x(3+x)=2x \cdot 3 + 2x \cdot x=2x^2+6x$
    • $3x(1+x+2x^2)= 3x \cdot 2x^2 +3x \cdot x + 3x \cdot 1=6x^3+3x^2+3x$
    Bei den letzten beiden Termen musst du jeweils beide Einträge der ersten Klammer mit dem Faktor hinter der Klammer multiplizieren. Anschließend kannst du gleichartige Terme zusammenfassen. Die Vorzeichen sind hierbei zu beachten. So erhältst du:

    $\begin{array}{ll} (x-2)\cdot 2x &=& x \cdot 2x - 2 \cdot 2x \\ &=& 2x^2 - 4x \\ \end{array}$

    Und:

    $\begin{array}{ll} (3x-1)\cdot(-3x^2) &=& 3x \cdot (-3x^2) -1 \cdot (-3x^2) \\ &=& -9x^3 + 3x^2 \\ \end{array}$