sofatutor 30 Tage
kostenlos ausprobieren

Videos & Übungen für alle Fächer & Klassenstufen

Was ist ein Term? 06:16 min

Textversion des Videos

Transkript Was ist ein Term?

Termann ist angehender Terminator. In seinem Intermship lernt er, Terme zu erkennen. Die terminale Frage seiner Ausbildung lautet: Was ist ein Term? Als Hilfsmittel steht ihm dieser Term-o-meter zur Verfügung. Er schlägt aus, sobald es sich bei einer Zeichenfolge um einen Term handelt. In vielen Mathebüchern kannst du folgende Definition für einen Term finden: Ein Term ist ein sinnvoller Rechenausdruck. Aber was macht einen Term sinnvoll und wann ist ein Ausdruck nicht sinnvoll? Ein solcher Rechenausdruck kann aus vier Elementen bestehen: Zahlen, Variablen, Klammern und Rechenzeichen wie Plus und Minus, der Malpunkt und das Geteilt-Zeichen. Ah! Der erste Rechenausdruck. Bloß eine 3? Der Term-o-meter schlägt aus. Bei der einzelnen 3 handelt es sich also tatsächlich um einen Term! Zahlen und Variablen gelten schon als Term, wenn sie alleinstehen. Und dieses Plus-Zeichen? Ist das ein Term? Der Term-o-meter schlägt nicht aus. Rechenzeichen dürfen nämlich nicht alleinstehen. Sie verbinden Zahlen und Variablen miteinander. Was ist mit dieser Zeichenfolge? Hier schlägt der Term-o-meter aus. Ein Term kann mit Zahlen beginnen und enden und genauso mit Variablen. Die Zahlen und Variablen sollen nicht direkt nebeneinanderstehen, sondern werden durch Rechenzeichen miteinander verbunden. Auch Rechenzeichen dürfen nicht nebeneinanderstehen. Ein Malpunkt wird manchmal nicht hingeschrieben. Trotzdem gilt diese Zeichenfolge als Multiplikation und der Gesamtausdruck als Term. Terme können beliebig lang sein. Und was ist das? Offenbar kein Term. Na klar! Klammern müssen auch geschlossen werden. Sie dürfen nicht leer sein, sondern müssen Zeichenfolgen enthalten, die selbst als korrekte Terme gelten würden. Sie verhalten sich in ihrer Gesamtheit wie eine Zahl oder eine Variable. Mit anderen Zahlen und Variablen werden sie also durch Rechenzeichen verbunden. Aber warum klappt das immer noch nicht? Ach so, wegen diesem Pluszeichen. Rechenzeichen dürfen nicht am Anfang oder Ende eines Terms stehen. So funktioniert es aber! Was hat er denn hier gefunden? In diesem Ausdruck sind ja zwei Klammern enthalten. Der Term-o-meter schlägt aus. Es handelt sich also um einen Term. In jeder Klammer muss eine Zeichenfolge stehen, die selbst als Term gelten würde. Solange das der Fall ist, kann ein Term auch mehrere ineinander verschachtelte Klammern enthalten. Ah! Na das ist ein Term! Aber hätten wir hier statt der positiven Zahl eine negative Zahl, würde vor der 27 ein Minus stehen. Das Minus ist eigentlich kein Rechenzeichen, sondern ein Bestandteil der Zahl. Damit aber nicht der Eindruck entsteht, dass hier zwei Rechenzeichen direkt nebeneinanderstehen, setzen wir die negative Zahl so in Klammern. Steht die negative Zahl am Anfang des Terms braucht man keine Klammern zu schreiben. Auch dann ist das Minus kein Rechenzeichen, sondern gehört als Vorzeichen zur Zahl. Und was ist mit dieser Zeichenfolge? Der Term-o-meter schlägt auch hier nicht aus. Das liegt an diesem Gleichheitszeichen. Bei dieser Zeichenfolge handelt es sich um eine Gleichung und Gleichungen gelten nicht als Terme. Auch Ungleichungen sind keine Terme. Gleichungen und Ungleichungen verbinden aber Terme miteinander. Und während Termann noch fleißig Terme untersucht, fassen wir zusammen. Ein Term ist ein sinnvoller Rechenausdruck, der aus Zahlen, Variablen, Klammern und Rechenzeichen bestehen kann. Dabei sind Zahlen, Variablen und Klammern so etwas wie Grundbausteine eines Terms. Ein Term muss mindestens einen dieser Grundbausteine enthalten. Terme bestehen aus einer beliebig langen Aneinanderreihung dieser Grundbausteine. Sie dürfen aber nicht direkt nebeneinanderstehen, sondern müssen durch Rechenzeichen miteinander verbunden werden. Die Rechenzeichen wiederum dürfen nicht am Anfang oder am Ende des Terms auftauchen. Sie dürfen auch nicht direkt hintereinanderstehen. Klammern werden links geöffnet und rechts geschlossen. Sie dürfen nicht leer sein, sondern müssen Zeichenfolgen enthalten, die selbst als korrekte Terme gelten würden. Daher kann eine Klammer auch weitere Klammern enthalten. Gleichungen und Ungleichungen gelten nicht als Terme. Das sind ganz schön viele Regeln, aber mit etwas Übung lernt man sie auch ohne Term-o-meter schnell. Und Termann? Der hat sein Intermship erfolgreich abgeschlossen. Terminatoren werden immer gebraucht.

5 Kommentare
  1. Lustig erklärt.

    Von Melaniehaas71, vor 16 Tagen
  2. cool

    Von Yiren Y., vor 21 Tagen
  3. Hallo Miki, schön, dass dir das Video gefällt. Viel Spaß weiterhin mit unseren Inhalten. Liebe Grüße aus der Redaktion.

    Von Albrecht Kröner, vor etwa einem Monat
  4. mir hat es sehr gefallen und ich hoffe dass es mir in der 5. klasse helfen kann.

    Von Miki S., vor etwa einem Monat
  5. cooles Video hoffentlich hilft es

    Von Hanae E., vor 6 Monaten

Was ist ein Term? Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Was ist ein Term? kannst du es wiederholen und üben.

  • Vervollständige die Regeln zu Termen.

    Tipps

    Weder ein Gleichheitszeichen $=$ noch ein anderes Relationszeichen (zum Beispiel: $<$ oder $\leq$) darf in einem Term vorkommen.

    Rechenzeichen stehen immer zwischen Zahlen und/oder Variablen.

    Das ist ein korrekter Term: $4x-8\cdot 45$

    Lösung

    Ein Term ist ein sinnvoller Rechenausdruck, der aus Zahlen, Variablen, Rechenzeichen und Klammern bestehen kann.

    Hierfür gelten jedoch noch einige weitere Regeln:

    • Klammern müssen immer als Klammerpaar vorkommen, wobei sie links geöffnet und rechts geschlossen werden.
    Das Klammerpaar darf also auch nicht leer sein, sondern muss eine Zeichenfolge enthalten, die wieder ein Term ist.

    Zum Beispiel: $4\cdot(x\cdot y+1)-5$

    • In einem Term muss immer mindestens eine Variable oder Zahl vorkommen, diese darf aber auch allein stehen.
    Zahlen und Variablen können sogar alleinstehend einen Term bilden. Zum Beispiel sind $3$ und $x$ jeweils Terme. Unterschiedliche Zahlen oder Variablen müssen immer durch ein Rechenzeichen verbunden sein, wenn sie in einem Term stehen. Nur das Malzeichen $\cdot$ kann weggelassen werden, somit sind $3\cdot x$ und $3x$ der gleiche Term.

    • Rechenzeichen wie $+$, $-$, $\cdot$ oder $:$ dürfen in Termen vorkommen, aber niemals alleine stehen oder sich am Anfang oder Ende des Terms befinden.
    Sie stehen immer zwischen Zahlen und/oder Variablen.

    • Ein Term ist niemals eine Gleichung oder Ungleichung.
    Weder ein Gleichheitszeichen $=$ noch ein anderes Relationszeichen (zum Beispiel: $<$ oder $\leq$) darf in einem Term vorkommen.

  • Zeige auf, ob es sich um einen Term handelt.

    Tipps

    Allgemein definiert ist ein Term ein sinnvoller Rechenausdruck. Dieser darf bestehen aus:

    • Zahlen
    • Variablen
    • Rechenzeichen
    • Klammern

    Ein Term darf niemals ein Gleichheitszeichen ($=$) enthalten.

    $-3x$ ist zum Beispiel ein Term, da das $-$ hier genau genommen kein Rechenzeichen ist, sondern das Vorzeichen und gehört somit zur $3$.

    Lösung

    Allgemein definiert ist ein Term ein sinnvoller Rechenausdruck. Dieser darf bestehen aus:

    • Zahlen
    • Variablen
    • Rechenzeichen
    • Klammern
    Hierbei handelt es sich um Terme:
    • $6-y:4$
    • $x\cdot(3+(7-y))$
    • $x+y:z$
    • $z$
    • $3x-(8:y)+5$
    • $(3+(7x-81a))$
    • $x+(-27)$ Das $-$ ist hier genau genommen kein Rechenzeichen, sondern das Vorzeichen und gehört somit zur $27$.
    • $-27+x$
    • $x-8\cdot z$
    • $x-8z$ Der Malpunkt ist das einzige Rechenzeichen, das du auch mal weglassen kannst.
    Hierbei handelt es sich nicht um Terme:
    • $-$
    Rechenzeichen dürfen nicht alleine stehen.
    • $3x-8:y+()$
    Klammern dürfen nicht leer stehen. Sie müssen eine Zeichenfolge enthalten, die wieder ein Term ist.
    • $6-y+:4$
    Rechenzeichen verbinden Zahlen oder Variablen, sie dürfen nicht direkt aufeinander folgen.
    • $x=3$
    Terme dürfen kein Gleichheitszeichen enthalten.
    • $3\leq x$
    Terme dürfen keine Relationszeichen enthalten.

  • Entscheide, ob es sich bei den mathematischen Ausdrücken um Terme handelt oder nicht.

    Tipps

    $a+b\cdot c$ und $3$ sind beides Terme.

    $5-:x+6y$ ist kein Term.

    Ungleichungen und Gleichheitszeichen enthalten immer ein Relationszeichen ($=$, $<$ etc.)

    Lösung

    Die folgenden Ausdrücke sind Terme:

    • $4x\cdot 3$
    • $8(9-2)+3$
    • $1+1$
    • $3x+3x$
    • $9$
    Die folgenden Ausdrücke sind keine Terme, sondern Gleichungen/ Ungleichungen:

    • $3+5=8$
    Terme dürfen kein Gleichheitszeichen enthalten, also sind Gleichungen keine Terme.
    • $2<4$
    Terme dürfen keine Relationszeichen enthalten, also sind Ungleichungen keine Terme.

    $~$

    Die folgenden Ausdrücke sind weder Terme noch Gleichungen/ Ungleichungen:

    • $+$
    Rechenzeichen dürfen nicht alleine stehen.
    • $4+3(5-7($
    Klammern müssen als Paare vorkommen, die geöffnet und wieder geschlossen werden.
    • $3\cdot()+5$
    Klammerpaare dürfen nicht leer sein.
    • $3+:a$
    Rechenzeichen dürfen nicht direkt hintereinander stehen.
  • Erkläre, warum die mathematischen Ausdrücke keine Terme sind.

    Tipps

    • $x-)3):7$
    Dieser Ausdruck ist kein Term, da Klammern immer als Paare vorkommen müssen, die geöffnet und wieder geschlossen werden.

    Enthält ein Ausdruck ein Relationszeichen wie $<$ oder $>$, handelt es sich um eine Ungleichung und keinen Term.

    Lösung

    Bei den Termen haben sich die folgenden Fehler eingeschlichen:

    • $3x+7y\cdot3+4x=7x+21y$
    Terme dürfen kein Gleichheitszeichen enthalten, also sind Gleichungen keine Terme.
    • $5x+6a>10000$
    Terme dürfen keine Relationszeichen enthalten, also sind Ungleichungen keine Terme.
    • $:$
    Rechenzeichen dürfen nicht alleine stehen, Variablen und Zahlen hingegen schon.
    • $3\cdot x-3):7$
    Klammern müssen als Paare vorkommen, die geöffnet und wieder geschlossen werden.
    • $3x+12-6a+:y+3$
    Rechenzeichen dürfen nicht direkt hintereinander stehen.
  • Gib wieder, was ein Term enthalten darf.

    Tipps

    Rechenzeichen wie $-$ und $\cdot$ dürfen zum Beispiel in Termen vorkommen.

    Variablen können sogar alleinstehend einen Term bilden, somit ist $a$ ein Term.

    Hier siehst du zwei Beispiele für Terme:

    • $3\cdot(3+x)-5$
    • $4+x$
    Lösung

    Folgendes darf in Termen vorkommen:

    • Klammern:
    Sie müssen aber aufgehen und wieder geschlossen werden. Das heißt, dass du immer ein Klammerpaar brauchst, das nicht leer sein darf, sondern eine Zeichenfolge enthalten muss, die wieder ein Term ist.

    Zum Beispiel: $3\cdot(3+x)-5$

    • Zahlen und Variablen
    Zahlen und Variablen können sogar alleinstehend einen Term bilden. Zum Beispiel sind $3$ und $x$ jeweils Terme. Unterschiedliche Zahlen müssen immer durch ein Rechenzeichen verbunden sein, wenn sie in einem Term stehen. Nur das Malzeichen $\cdot$ kann weggelassen werden, somit sind $3\cdot x$ und $3x$ der gleiche Term.

    • Rechenzeichen
    Rechenzeichen wie $+$, $-$, $\cdot$ und $:$ dürfen in Termen vorkommen, jedoch nicht alleine stehen. Sie stehen immer zwischen Zahlen und/oder Variablen.

    • Ein Gleichheitszeichen $=$ oder ein anderes Relationszeichen (zum Beispiel: $<$ oder $\leq$), darf niemals in einem Term vorkommen.
  • Ermittle, warum die mathematischen Ausdrücke keine Terme sind.

    Tipps

    Es kann auch mehr als ein Fehler in einem Term sein.

    Terme sind Rechenausdrücke, keine Gleichungen oder Ungleichungen.

    Lösung

    Hier haben sich die folgenden Fehler eingeschlichen:

    • $44+5y-3x\cdot (4-6b)+13-7x)+12$
    Es geht nur eine Klammer auf, aber zwei zu.

    • $9-xy+(5\cdot x \cdot (x-4))\cdot$
    Am Ende steht ein Multiplikationszeichen, aber am Ende eines Terms darf niemals ein Rechenzeichen stehen.

    • $x+y-:300x+21y-73x+x(5a-b)=21y-73x+x(5a-b)$
    Hier finden wir gleich zwei Fehler: Einerseits stehen ein $-$ und $:$ direkt hintereinander, was Rechenzeichen nicht dürfen. Andererseits steht hier ein Gleichheitszeichen, das in einem Term nichts zu suchen hat.