30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Rechenregeln in Termen 05:07 min

Textversion des Videos

Transkript Rechenregeln in Termen

Gestern hat meine Tante Sally alles in der falschen Reihenfolge gemacht. Schau dir das mal an, sie hat ihre Unterhose über ihrem Rock angezogen! Dann hat sie uns zur Schule geschickt und erst danach unser Frühstück gemacht! Später beim Kekse backen, hat sie die Eier erst nach dem Backen hinzugefügt. Meine Tante Sally hat alles in der falschen Reihenfolge gemacht, aber Ordnung ist doch so wichtig im Leben. Auch in der Mathematik ist eine bestimmte Reihenfolge wichtig. Terme zu lösen ist ungefähr so, wie einem Rezept zu folgen. Wir befolgen einfach die KEMDAS Regel. Der erste Schritt in der Reihenfolge bei der Berechnung von Termen sind die Klammern, hier also das K. Alles, was in einer Klammer steht muss zuerst berechnet werden. E steht für Exponenten. Diese kommen in der Reihenfolge als zweites. Im nächsten Schritt beachten wir das M und das D, welches für Multiplikation und Division steht. Nachdem du die Klammern und die Exponenten berechnet hast, multiplizierst und dividierst du. Zu guter Letzt haben wir noch A und S, welche für Addition und Subtraktion stehen. Diese sind unser letzter Schritt bei der Berechnung von Termen. Beachte dabei bitte auch immer die Regel der Berechnung von links nach rechts. Lass uns unser Wissen nun anwenden, um ein paar Terme zu berechnen. Du wirst sehen, dass dies ganz leicht ist, wenn wir KEMDAS verwenden. Lass uns zunächst zwei sehr ähnliche Terme betrachten: 8-2+5 und 8- in Klammern 2+5. Der einzige Unterschied hier sind die Klammern. Der erste Term beinhaltet nur Addition und Subtraktion, also müssen wir hier einfach nur von links nach rechts rechnen. 8 minus 2 ergibt 6. Und 6 plus 5 sind 11. Der zweite Term beinhaltet zusätzlich noch Klammern. In KEMDAS kommt das K zuerst. Die Rechenregeln zeigen dir also, dass du die Klammern zuerst berechnen musst. 2 plus 5 sind 7. Und 8 minus 7 sind 1. Auch wenn diese beiden Terme sehr ähnlich waren, haben sie zwei ganz unterschiedliche Ergebnisse. Schauen wir uns doch ein anderes Beispiel dazu an, aber diesmal eins in dem Klammern, Exponenten, Addition und Subtraktion vorkommen. Klammern werden zuerst berechnet. 8 minus 2 sind 6 und 5 plus 2 sind 7. Nun die Exponenten. 6 zum Quadrat sind 36. Zu guter Letzt addieren wir noch. 36 plus 7 sind 43. Nun ist es an der Zeit für ein komplexeres Beispiel. Schau wie viele verschiedene Rechenzeichen wir hier haben. Dieser Term beinhaltet Klammern, Exponenten, Multiplikation, Division, Addition und Subtraktion. Als erstes sollten wir die Klammern berechnen. In der Klammer steht hier 8 geteilt durch 2 minus 2. Auch innerhalb der Klammern musst du KEMDAS beachten! Division wird vor der Subtraktion durchgeführt, also musst du zunächst 8 geteilt durch 2 rechnen. Nun rechnen wir 4 minus 2 und erhalten 2. In den anderen Klammern musst du zunächst den Exponenten berechnen bevor du addierst. 5 hoch 2 sind 25, 25 plus 2 sind 27. Sieht doch schon besser aus, oder? Nachdem wir nun die Klammern berechnet haben, machen wir mit E für Exponenten weiter. 2 hoch 3 ergibt 8. Nun können wir von links nach rechts multiplizieren und dividieren. 4 mal 8 sind 32 und 27 geteilt durch 9 sind 3. Der letzte Schritt ist nun die Addition. 32 plus 3 sind 35. Geschafft! Wir haben mit einem langen Termen angefangen, aber es mit der KEMDAS Regel geschafft auf das richtige Ergebnis zu kommen. Auch wenn der Term kompliziert aussieht, mit KEMDAS schaffen wir das! Du kannst dir KEMDAS mit dem folgenden Satz merken: Kekse Essen Macht Dich Auch satt. Da muss Tante Sally an ihrer Ordnung wohl noch etwas arbeiten.

3 Kommentare
  1. Die Videos helfen mir echt weiter . GUT

    Von Svenja Scharein, vor 24 Tagen
  2. Komische Begriffe

    Von Fla Germany, vor etwa einem Monat
  3. Aber_so_geht_das_auch!(Habs_mal_ausprobiert)

    Von Yiren Y., vor etwa einem Monat

Rechenregeln in Termen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Rechenregeln in Termen kannst du es wiederholen und üben.

  • Gib den Merksatz für die Rechenregeln in Klammern an.

    Tipps

    Du kennst bereits die Regel: Punktrechnung geht vor Strichrechnung.

    Die Addition und Subtraktion sind sogenannte Strichrechnungen und die Division und Multiplikation nennen wir Punktrechnungen.

    Lösung

    Bei der Berechnung von langen und komplizierten Termen gehen wir nach der KEMDAS-Regel vor.

    • Wir lösen zunächst die Ausdrücke in den Klammern.
    • Im zweiten Schritt betrachten wir die Exponenten.
    • Danach lösen wir alle Multiplikationen und Divisionen.
    • Abschließend werden alle Additionen und Subtraktionen durchgeführt.
    Die KEMDAS-Regel kannst du dir mit dem folgenden Satz merken.

    • Kekse essen macht dich auch satt.
    Bedenke auch, dass wir weiterhin immer von links nach rechts rechnen.

  • Berechne mit den Rechenregeln in Termen.

    Tipps

    Diesen Satz solltest du dir merken: Kekse essen macht dich auch satt.

    Es ist wichtig, dass du zunächst die Klammern betrachtest, denn:

    $8-2+5=6+5=11$

    $8-(2+5)=8-7=1$

    Lösung

    Es ist wichtig, dass du zunächst die Klammern betrachtest. Im folgenden Beispiel erkennst du, dass Klammern das Ergebnis eines Terms vollkommen ändern können:

    • $8-2+5=6+5=11$
    • $8-(2+5)=8-7=1$
    Daher merkst du dir die KEMDAS-Regel am besten mit diesem Merksatz:

    • Kekse essen macht dich auch satt.
    Diese Regel steht für:

    Klammern, Exponent, Multiplikation/Division, Addition/ Subtraktion

    Wir rechnen also wie folgt:

    $\begin{align} (8-2)^2+(5+2) &= 6^2+(5+2) &~\vert~ \text{Klammern} \\ &= 6^2+7 &~\vert~ \text{Exponent} \\ &= 36+7 &~\vert~ \text{Addition} \\ &= 43\\ \end{align}$

  • Beschreibe dein Vorgehen bei der Berechnung von komplizierten Termen.

    Tipps

    Bei der KEMDAS-Regel steht das K für Klammern und das E für Exponenten.

    $3\cdot (5+2)^2$

    Hier rechnest du zunächst $5+2=7$ in der Klammer und erhältst:

    $3\cdot 7^2$

    Exponenten werden vor der Multiplikation betrachtet, daher gilt:

    $3\cdot 7^2=3 \cdot 49 = 147$

    Lösung

    Bei der Lösung von komplizierten Termen nutzt du die KEMDAS-Regel. Das steht für:

    • Wir lösen zunächst die Ausdrücke in den Klammern.
    • Im zweiten Schritt betrachten wir die Exponenten.
    • Danach lösen wir alle Multiplikationen und Divisionen.
    • Abschließend werden alle Additionen und Subtraktionen durchgeführt.
    Wichtig ist hierbei zu beachten, dass du auch innerhalb der Klammern zunächst die Potenzen berechnest, dann multiplizierst / dividierst und am Ende addierst und subtrahierst.

    Im ersten Schritt berechnest du den Exponenten in der hinteren Klammer.

    $\begin{array}{rcll} 4 \cdot \left( \frac8 2 -2\right)^3+\frac{(5^2+2)}{9} &=& 4 \cdot \left( \frac8 2 -2\right)^3+\frac{(\color{#669900}{25}+2)}{9} &\vert~\text{Division}\\ &=& 4 \cdot \left(\color{#669900}{4} -2\right)^3+\frac{(25+2)}{9} &\vert~\text{Subtraktion}\\ &=& 4 \cdot \color{#669900}{2}^3+\frac{(25+2)}{9} &\vert~\text{Addition}\\ &=& 4 \cdot 2^3+\frac{\color{#669900}{27}}{9} &\vert~\text{Exponent}\\ &=& 4 \cdot \color{#669900}{8} +\frac{27}{9} &\vert~\text{Multiplikation}\\ &=& \color{#669900}{32} +\frac{27}{9} &\vert~\text{Division}\\ &=& 32 +\color{#669900}{3} &\vert~\text{Addition}\\ &=& 35 & \\ \end{array}$

  • Vereinfache Terme mit Variablen.

    Tipps

    $x$ steht für eine beliebige Zahl. Bedenke, dass für die Multiplikation gilt:

    $2x\cdot 3=6x$

    Bei der Addition aber:

    $2x+3\neq 5x$

    Bei verschachtelten Klammern löst du zunächst die innere und dann die äußere Klammer auf:

    $\begin{array}{rcll} \\ x \cdot (4+(8-2)) &=& x \cdot (4+6)& \vert~\text{innere Klammer} \\ &=& x \cdot 10 & \\ &=& 10x & \\ \\ \end{array}$

    Lösung

    Korrekt gerechnet wurde hier:

    • $3^2+(2^4+5)\cdot(-2)+17=-16$
    Zuerst rechnen wir mit dem Exponenten im Ausdruck in der Klammer:
    • $3^2+(2^4+5)\cdot(-2)+17=3^2+(16+5)\cdot(-2)+17$
    Nun berechnen wir die Summe in der Klammer:
    • $3^2+(16+5)\cdot(-2)+17= 3^2+21\cdot(-2)+17$
    Danach betrachten wir den Exponenten:
    • $3^2+21\cdot(-2)+17=9+21\cdot(-2)+17$
    Nun folgt die Multiplikation:
    • $9+21\cdot(-2)+75=9-42+17$
    Abschließend wir addiert und subtrahiert:
    • $9-42+17=-16$
    Außerdem ist diese Rechnung korrekt:

    • $x \cdot ((4^3-4)\cdot 3-2) +24 = 178x+24$
    $\begin{array}{rcll} \\ x \cdot ((4^3-4)\cdot 3-2) +24 &=& x \cdot ((64-4)\cdot 3-2) +24& \vert~\text{innere Klammer} \\ &=&x \cdot (60\cdot 3-2) +24 & \vert~\text{Multiplikation} \\ &=&x \cdot (180-2) +24 & \vert~\text{Addition} \\ &=& x \cdot 178 +24 & \vert~\text{Multiplikation}\\ &=& 178x + 24 \\ \\ \end{array}$

    Hier wurde nicht richtig gerechnet:

    • $5x \cdot \left( \frac{21} 7 -1\right)^3+\frac{(3^3-3)}{8}\neq 43x$
    $\begin{array}{rcll} 5x \cdot \left( \frac{21} 7 -1\right)^3+\frac{(3^3-3)}{8} &=& 5x \cdot \left( \frac{21} 7 -1\right)^3+\frac{(27-3)}{8} &~\vert~\text{Division}\\ &=&5x \cdot \left(3 -1\right)^3+\frac{(27-3)}{8} &~\vert~\text{Subtraktionen}\\ &=&5x \cdot 2^3+\frac{24}{8}&~\vert~\text{Exponent}\\ &=&5x \cdot 8+\frac{24}{8}&~\vert~\text{Division}\\ &=& 5x \cdot 8+3&~\vert~\text{Multiplikation}\\ &=& 40x+3 \\ \end{array}$

    Ein Summand mit $x$ und einer ohne $x$ können nicht zusammengefasst werden.

    • $x \cdot (4+(8^2-4)\cdot 3) \neq 17+x$
    $\begin{array}{rcll} \\ x \cdot (4+(8^2-4)\cdot 3) &=& x \cdot (4+(64-4)\cdot 3)& \vert~\text{innere Klammer} \\ &=&x \cdot (4+60\cdot 3) & \vert~\text{Multiplikation} \\ &=&x \cdot (4+180) & \vert~\text{Addition} \\ &=& x \cdot 184 & \vert~\text{Multiplikation}\\ &=& 184x \\ \end{array}$

  • Bestimme die Lösung der Terme.

    Tipps

    Bevor wir multiplizieren oder dividieren können, müssen erst alle Exponenten ausgerechnet werden.

    $1-7-3\cdot(2)^2= 1-7-3\cdot 4$

    Lösung

    Erste Rechnung

    • $2^2+(3+14)\cdot(-2)+30$
    Zuerst berechnen wir den Ausdruck in der Klammer:
    • $2^2+(3+14)\cdot(-2)+30= 2^2+17\cdot(-2)+30$
    Danach betrachten wir den Exponenten:
    • $2^2+17\cdot(-2)+30=4+17\cdot(-2)+30$
    Nun folgt die Multiplikation:
    • $4+17\cdot(-2)+30=4-34+30$
    Abschließend wird addiert:
    • $4-34+30=0$
    Zweite Rechnung

    $\begin{array}{rcl} 5 \cdot (4+8-2)^2 &=& 5 \cdot (12-2)^2 \\ &=& 5 \cdot 10^2 \\ &=& 5 \cdot 100 \\ &=& 500 \\ \end{array}$

    Dritte Rechnung

    $\begin{array}{rcll} 5 \cdot \left( \frac{21} 7 -1\right)^3+\frac{(3^3-3)}{8} &=& 5 \cdot \left( \frac{21} 7 -1\right)^3+\frac{(\color{#669900}{3^3}-3)}{8} &~\vert~\text{Klammern: Division und Exponent}\\ &=& 5 \cdot \left(\color{#669900}{3} -1\right)^3+\frac{(\color{#669900}{27}-3)}{8} &~\vert~\text{Klammern: Subtraktion}\\ &=& 5 \cdot \color{#669900}{2^3}+\frac{24}{8} &~\vert~\text{Exponent}\\ &=& 5 \cdot \color{#669900}{8} +\frac{24}{8} &~\vert~\text{Multiplikation}\\ &=& \color{#669900}{40} +\frac{24}{8} &~\vert~\text{Division}\\ &=& 40 +\color{#669900}{3} &~\vert~\text{Addition}\\ &=& 43 \\ \end{array}$

    Vierte Rechnung

    Wir beginnen wieder mit den Additionen in den Klammern:

    $\begin{array}{rcll} 5-(3+4)-3\cdot(2+5)^2&=&5+1-7-3\cdot(7)^2 &~\vert~ \text{Exponent} \\ &=&5-7-3\cdot 49 &~\vert~ \text{Multiplikation} \\ &=&5-7-147 &~\vert~ \text{Add. und Sub.} \\ &=& -149 \\ \end{array}$

  • Ermittle die Lösung durch Anwenden der Rechenregeln für Terme.

    Tipps

    Wir berechnen erst die Summe in der Klammer bevor wir multiplizieren:

    • $2^3+(81+15)\cdot(-1)+75= 2^3+96\cdot(-1)+75$

    Exponenten werden vor Produkten und Divisionen berechnet:

    $2\cdot 3^3 = 2 \cdot 27 = 54$

    Lösung

    Erste Rechnung

    Wir berechnen zunächst die Division in der Klammer:

    • $(\frac93+7)^2\cdot 6^2+1=(3+7)^2\cdot 6^2+1$
    Dann die Summe in der Klammer:

    • $(3+7)^2\cdot 6^2+1= 10^2\cdot6^2+1$
    Nun die beiden Exponenten:

    • $10^2\cdot6^2+1=100\cdot 36+1$
    Als Nächstes multiplizieren wir:

    • $100\cdot 36+1=3600+1$
    Zuletzt die Addition:

    • $3600+1=3601$
    Zweite Rechnung

    $\begin{array}{rcll} \left( \frac{14} 2 -3\right)^2\cdot 5+\frac{(3^3-3)}{3} &=& \left( \frac{14} 2 -3\right)^2\cdot 5+\frac{(\color{#669900}{27}-3)}{3} &~\vert~\text{Division}\\ &=& \left(\color{#669900}{7} -3\right)^2 \cdot 5+\frac{(27-3)}{3} &~\vert~\text{Subtraktion}\\ &=& \color{#669900}{4}^2\cdot 5+\frac{(27-3)}{3} &~\vert~\text{Addition}\\ &=&4^2\cdot 5+\frac{\color{#669900}{24}}{3} &~\vert~\text{Exponent}\\ &=& \color{#669900}{16}\cdot 5+\frac{24}{3} &~\vert~\text{Multiplikation}\\ &=& \color{#669900}{80} +\frac{24}{3} &~\vert~\text{Division}\\ &=& 80 +\color{#669900}{8} &~\vert~\text{Addition}\\ &=& 88 \\ \end{array}$

    Dritte Rechnung

    • $2^3+(3^4+15)\cdot(-1)+75$
    Zuerst rechnen wir den Ausdruck mit dem Exponenten in der Klammer:
    • $2^3+(3^4+15)\cdot(-1)+75=2^3+(81+15)\cdot(-1)+75$
    Nun berechnen wir die Summe in der Klammer:
    • $2^3+(81+15)\cdot(-1)+75= 2^3+96\cdot(-1)+75$
    Danach betrachten wir den Exponenten:
    • $2^3+96\cdot(-1)+75=8+96\cdot(-1)+75$
    Nun folgt die Multiplikation:
    • $8+96\cdot(-1)+75=8-96+75$
    Abschließend wir addiert:
    • $8-96+75=-13$

    Vierte Rechnung

    $\frac{(5-9^2)}{2}+6\cdot \left(\frac4 2-3\right)=-44$