Rechenregeln in Termen

-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
-
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
-
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
Grundlagen zum Thema Rechenregeln in Termen
Nach dem Schauen dieses Videos wirst du in der Lage sein, Terme in der richtigen Reihenfolge zu berechnen
Zunächst lernst du, welche Regeln du beachten musst, um Terme in der richtigen Reihenfolge zu berechnen. Anschließend siehst du, wie du dir diese Regeln ganz einfach mit der KEMDAS-Regel merken kannst. Abschließend rechnen wir noch ein paar Beispiele zusammen, um diese Regeln anzuwenden.
Lerne etwas über Tante Sally, die ebenfalls noch lernen muss, etwas in der richtigen Reihenfolge zu machen.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Terme, Klammerregel, Punkt vor Strich und KEMDAS.
Bevor du dieses Video schaust, solltest du bereits wissen, was ein Term ist und du solltest die Grundrechenarten beherrschen.
Nach diesem Video wirst du darauf vorbereitet sein, schwierige Terme durch die Rechenregeln zu lösen.
Transkript Rechenregeln in Termen
Gestern hat meine Tante Sally alles in der falschen Reihenfolge gemacht. Schau dir das mal an, sie hat ihre Unterhose über ihrem Rock angezogen! Dann hat sie uns zur Schule geschickt und erst danach unser Frühstück gemacht! Später beim Kekse backen, hat sie die Eier erst nach dem Backen hinzugefügt. Meine Tante Sally hat alles in der falschen Reihenfolge gemacht, aber Ordnung ist doch so wichtig im Leben. Auch in der Mathematik ist eine bestimmte Reihenfolge wichtig. Terme zu lösen ist ungefähr so, wie einem Rezept zu folgen. Wir befolgen einfach die KEMDAS Regel. Der erste Schritt in der Reihenfolge bei der Berechnung von Termen sind die Klammern, hier also das K. Alles, was in einer Klammer steht muss zuerst berechnet werden. E steht für Exponenten. Diese kommen in der Reihenfolge als zweites. Im nächsten Schritt beachten wir das M und das D, welches für Multiplikation und Division steht. Nachdem du die Klammern und die Exponenten berechnet hast, multiplizierst und dividierst du. Zu guter Letzt haben wir noch A und S, welche für Addition und Subtraktion stehen. Diese sind unser letzter Schritt bei der Berechnung von Termen. Beachte dabei bitte auch immer die Regel der Berechnung von links nach rechts. Lass uns unser Wissen nun anwenden, um ein paar Terme zu berechnen. Du wirst sehen, dass dies ganz leicht ist, wenn wir KEMDAS verwenden. Lass uns zunächst zwei sehr ähnliche Terme betrachten: 8-2+5 und 8- in Klammern 2+5. Der einzige Unterschied hier sind die Klammern. Der erste Term beinhaltet nur Addition und Subtraktion, also müssen wir hier einfach nur von links nach rechts rechnen. 8 minus 2 ergibt 6. Und 6 plus 5 sind 11. Der zweite Term beinhaltet zusätzlich noch Klammern. In KEMDAS kommt das K zuerst. Die Rechenregeln zeigen dir also, dass du die Klammern zuerst berechnen musst. 2 plus 5 sind 7. Und 8 minus 7 sind 1. Auch wenn diese beiden Terme sehr ähnlich waren, haben sie zwei ganz unterschiedliche Ergebnisse. Schauen wir uns doch ein anderes Beispiel dazu an, aber diesmal eins in dem Klammern, Exponenten, Addition und Subtraktion vorkommen. Klammern werden zuerst berechnet. 8 minus 2 sind 6 und 5 plus 2 sind 7. Nun die Exponenten. 6 zum Quadrat sind 36. Zu guter Letzt addieren wir noch. 36 plus 7 sind 43. Nun ist es an der Zeit für ein komplexeres Beispiel. Schau wie viele verschiedene Rechenzeichen wir hier haben. Dieser Term beinhaltet Klammern, Exponenten, Multiplikation, Division, Addition und Subtraktion. Als erstes sollten wir die Klammern berechnen. In der Klammer steht hier 8 geteilt durch 2 minus 2. Auch innerhalb der Klammern musst du KEMDAS beachten! Division wird vor der Subtraktion durchgeführt, also musst du zunächst 8 geteilt durch 2 rechnen. Nun rechnen wir 4 minus 2 und erhalten 2. In den anderen Klammern musst du zunächst den Exponenten berechnen bevor du addierst. 5 hoch 2 sind 25, 25 plus 2 sind 27. Sieht doch schon besser aus, oder? Nachdem wir nun die Klammern berechnet haben, machen wir mit E für Exponenten weiter. 2 hoch 3 ergibt 8. Nun können wir von links nach rechts multiplizieren und dividieren. 4 mal 8 sind 32 und 27 geteilt durch 9 sind 3. Der letzte Schritt ist nun die Addition. 32 plus 3 sind 35. Geschafft! Wir haben mit einem langen Termen angefangen, aber es mit der KEMDAS Regel geschafft auf das richtige Ergebnis zu kommen. Auch wenn der Term kompliziert aussieht, mit KEMDAS schaffen wir das! Du kannst dir KEMDAS mit dem folgenden Satz merken: Kekse Essen Macht Dich Auch satt. Da muss Tante Sally an ihrer Ordnung wohl noch etwas arbeiten.
Rechenregeln in Termen Übung
-
Berechne mit den Rechenregeln in Termen.
TippsDiesen Satz solltest du dir merken: Kekse essen macht dich auch satt.
Es ist wichtig, dass du zunächst die Klammern betrachtest, denn:
$8-2+5=6+5=11$
$8-(2+5)=8-7=1$
LösungEs ist wichtig, dass du zunächst die Klammern betrachtest. Im folgenden Beispiel erkennst du, dass Klammern das Ergebnis eines Terms vollkommen ändern können:
- $8-2+5=6+5=11$
- $8-(2+5)=8-7=1$
- Kekse essen macht dich auch satt.
Klammern, Exponent, Multiplikation/Division, Addition/ Subtraktion
Wir rechnen also wie folgt:
$\begin{align} (8-2)^2+(5+2) &= 6^2+(5+2) &~\vert~ \text{Klammern} \\ &= 6^2+7 &~\vert~ \text{Exponent} \\ &= 36+7 &~\vert~ \text{Addition} \\ &= 43\\ \end{align}$
-
Beschreibe dein Vorgehen bei der Berechnung von komplizierten Termen.
TippsBei der KEMDAS-Regel steht das K für Klammern und das E für Exponenten.
$3\cdot (5+2)^2$
Hier rechnest du zunächst $5+2=7$ in der Klammer und erhältst:
$3\cdot 7^2$
Exponenten werden vor der Multiplikation betrachtet, daher gilt:
$3\cdot 7^2=3 \cdot 49 = 147$
LösungBei der Lösung von komplizierten Termen nutzt du die KEMDAS-Regel. Das steht für:
- Wir lösen zunächst die Ausdrücke in den Klammern.
- Im zweiten Schritt betrachten wir die Exponenten.
- Danach lösen wir alle Multiplikationen und Divisionen.
- Abschließend werden alle Additionen und Subtraktionen durchgeführt.
Im ersten Schritt berechnest du den Exponenten in der hinteren Klammer.
$\begin{array}{rcll} 4 \cdot \left( \frac8 2 -2\right)^3+\frac{(5^2+2)}{9} &=& 4 \cdot \left( \frac8 2 -2\right)^3+\frac{(\color{#669900}{25}+2)}{9} &\vert~\text{Division}\\ &=& 4 \cdot \left(\color{#669900}{4} -2\right)^3+\frac{(25+2)}{9} &\vert~\text{Subtraktion}\\ &=& 4 \cdot \color{#669900}{2}^3+\frac{(25+2)}{9} &\vert~\text{Addition}\\ &=& 4 \cdot 2^3+\frac{\color{#669900}{27}}{9} &\vert~\text{Exponent}\\ &=& 4 \cdot \color{#669900}{8} +\frac{27}{9} &\vert~\text{Multiplikation}\\ &=& \color{#669900}{32} +\frac{27}{9} &\vert~\text{Division}\\ &=& 32 +\color{#669900}{3} &\vert~\text{Addition}\\ &=& 35 & \\ \end{array}$
-
Bestimme die Lösung der Terme.
TippsBevor wir multiplizieren oder dividieren können, müssen erst alle Exponenten ausgerechnet werden.
$1-7-3\cdot(2)^2= 1-7-3\cdot 4$
LösungErste Rechnung
- $2^2+(3+14)\cdot(-2)+30$
- $2^2+(3+14)\cdot(-2)+30= 2^2+17\cdot(-2)+30$
- $2^2+17\cdot(-2)+30=4+17\cdot(-2)+30$
- $4+17\cdot(-2)+30=4-34+30$
- $4-34+30=0$
$\begin{array}{rcl} 5 \cdot (4+8-2)^2 &=& 5 \cdot (12-2)^2 \\ &=& 5 \cdot 10^2 \\ &=& 5 \cdot 100 \\ &=& 500 \\ \end{array}$
Dritte Rechnung
$\begin{array}{rcll} 5 \cdot \left( \frac{21} 7 -1\right)^3+\frac{(3^3-3)}{8} &=& 5 \cdot \left( \frac{21} 7 -1\right)^3+\frac{(\color{#669900}{3^3}-3)}{8} &~\vert~\text{Klammern: Division und Exponent}\\ &=& 5 \cdot \left(\color{#669900}{3} -1\right)^3+\frac{(\color{#669900}{27}-3)}{8} &~\vert~\text{Klammern: Subtraktion}\\ &=& 5 \cdot \color{#669900}{2^3}+\frac{24}{8} &~\vert~\text{Exponent}\\ &=& 5 \cdot \color{#669900}{8} +\frac{24}{8} &~\vert~\text{Multiplikation}\\ &=& \color{#669900}{40} +\frac{24}{8} &~\vert~\text{Division}\\ &=& 40 +\color{#669900}{3} &~\vert~\text{Addition}\\ &=& 43 \\ \end{array}$
Vierte Rechnung
Wir beginnen wieder mit den Additionen in den Klammern:
$\begin{array}{rcll} 5-(3+4)-3\cdot(2+5)^2&=&5+1-7-3\cdot(7)^2 &~\vert~ \text{Exponent} \\ &=&5-7-3\cdot 49 &~\vert~ \text{Multiplikation} \\ &=&5-7-147 &~\vert~ \text{Add. und Sub.} \\ &=& -149 \\ \end{array}$
-
Ermittle die Lösung durch Anwenden der Rechenregeln für Terme.
TippsWir berechnen erst die Summe in der Klammer bevor wir multiplizieren:
- $2^3+(81+15)\cdot(-1)+75= 2^3+96\cdot(-1)+75$
Exponenten werden vor Produkten und Divisionen berechnet:
$2\cdot 3^3 = 2 \cdot 27 = 54$
LösungErste Rechnung
Wir berechnen zunächst die Division in der Klammer:
- $(\frac93+7)^2\cdot 6^2+1=(3+7)^2\cdot 6^2+1$
- $(3+7)^2\cdot 6^2+1= 10^2\cdot6^2+1$
- $10^2\cdot6^2+1=100\cdot 36+1$
- $100\cdot 36+1=3600+1$
- $3600+1=3601$
$\begin{array}{rcll} \left( \frac{14} 2 -3\right)^2\cdot 5+\frac{(3^3-3)}{3} &=& \left( \frac{14} 2 -3\right)^2\cdot 5+\frac{(\color{#669900}{27}-3)}{3} &~\vert~\text{Division}\\ &=& \left(\color{#669900}{7} -3\right)^2 \cdot 5+\frac{(27-3)}{3} &~\vert~\text{Subtraktion}\\ &=& \color{#669900}{4}^2\cdot 5+\frac{(27-3)}{3} &~\vert~\text{Addition}\\ &=&4^2\cdot 5+\frac{\color{#669900}{24}}{3} &~\vert~\text{Exponent}\\ &=& \color{#669900}{16}\cdot 5+\frac{24}{3} &~\vert~\text{Multiplikation}\\ &=& \color{#669900}{80} +\frac{24}{3} &~\vert~\text{Division}\\ &=& 80 +\color{#669900}{8} &~\vert~\text{Addition}\\ &=& 88 \\ \end{array}$
Dritte Rechnung
- $2^3+(3^4+15)\cdot(-1)+75$
- $2^3+(3^4+15)\cdot(-1)+75=2^3+(81+15)\cdot(-1)+75$
- $2^3+(81+15)\cdot(-1)+75= 2^3+96\cdot(-1)+75$
- $2^3+96\cdot(-1)+75=8+96\cdot(-1)+75$
- $8+96\cdot(-1)+75=8-96+75$
- $8-96+75=-13$
Vierte Rechnung
$\frac{(5-9^2)}{2}+6\cdot \left(\frac4 2-3\right)=-44$
-
Gib den Merksatz für die Rechenregeln in Klammern an.
TippsDu kennst bereits die Regel: Punktrechnung geht vor Strichrechnung.
Die Addition und Subtraktion sind sogenannte Strichrechnungen und die Division und Multiplikation nennen wir Punktrechnungen.
LösungBei der Berechnung von langen und komplizierten Termen gehen wir nach der KEMDAS-Regel vor.
- Wir lösen zunächst die Ausdrücke in den Klammern.
- Im zweiten Schritt betrachten wir die Exponenten.
- Danach lösen wir alle Multiplikationen und Divisionen.
- Abschließend werden alle Additionen und Subtraktionen durchgeführt.
- Kekse essen macht dich auch satt.
-
Vereinfache Terme mit Variablen.
Tipps$x$ steht für eine beliebige Zahl. Bedenke, dass für die Multiplikation gilt:
$2x\cdot 3=6x$
Bei der Addition aber:
$2x+3\neq 5x$
Bei verschachtelten Klammern löst du zunächst die innere und dann die äußere Klammer auf:
$\begin{array}{rcll} \\ x \cdot (4+(8-2)) &=& x \cdot (4+6)& \vert~\text{innere Klammer} \\ &=& x \cdot 10 & \\ &=& 10x & \\ \\ \end{array}$
LösungKorrekt gerechnet wurde hier:
- $3^2+(2^4+5)\cdot(-2)+17=-16$
- $3^2+(2^4+5)\cdot(-2)+17=3^2+(16+5)\cdot(-2)+17$
- $3^2+(16+5)\cdot(-2)+17= 3^2+21\cdot(-2)+17$
- $3^2+21\cdot(-2)+17=9+21\cdot(-2)+17$
- $9+21\cdot(-2)+75=9-42+17$
- $9-42+17=-16$
- $x \cdot ((4^3-4)\cdot 3-2) +24 = 178x+24$
Hier wurde nicht richtig gerechnet:
- $5x \cdot \left( \frac{21} 7 -1\right)^3+\frac{(3^3-3)}{8}\neq 43x$
Ein Summand mit $x$ und einer ohne $x$ können nicht zusammengefasst werden.
- $x \cdot (4+(8^2-4)\cdot 3) \neq 17+x$
2.666
sofaheld-Level
6.196
vorgefertigte
Vokabeln
10.806
Lernvideos
43.923
Übungen
38.639
Arbeitsblätter
24h
Hilfe von Lehrer*
innen

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Rechteck
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was ist eine Viertelstunde
- Prisma
- Mitternachtsformel
- Grundrechenarten Begriffe
- Dreiecksarten
- Quader
- Satz des Pythagoras
- Dreieck Grundschule
- Kreis
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen in Worten schreiben
- Meter
- Orthogonalität
- Schriftlich multiplizieren
- Brüche multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen berechnen
- Brüche addieren
- Kongruenz
- Exponentialfunktion
- Scheitelpunktform
- Punktsymmetrie
- Logarithmus
- Erwartungswert
- Skalarprodukt
- Primfaktorzerlegung
- Quadratische Ergänzung
- Zinseszins
- Geradengleichung aus zwei Punkten bestimmen
- Varianz
34 Kommentare
Pele-in-seiner-Prime
mega lustig aber hilfreich
hat mir sehr geholfen! Danke!!
PS ; ( sorry das ich zwei Kommentare gebe ) Ich kenne manche Rechenzeichen noch
nicht ,sonst ist es sehr cool
Ich finde das voll cool und die Geschichte ist TOOOOOOOOOOOOOOOOOOOOOOOOTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALLLLL lustig 🤣