30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Die Seitenhalbierende 04:59 min

Textversion des Videos

Transkript Die Seitenhalbierende

Lena Lagerfeuer hat auf ihrem Campingplatz zwei Arten von Besuchern: Manche kommen mit dem Zelt, andere mit dem Wohnmobil. Von beiden Arten kommen ungefähr gleich viele. Lena möchte daher ihren dreieckigen Campingplatz in zwei gleich große Dreiecke teilen. Dafür benötigt sie Kenntnisse über die Seitenhalbierende. Aber was genau ist eine Seitenhalbierende? Haben wir ein Dreieck ABC gegeben, dann ist diejenige Strecke, die den Mittelpunkt der Seite c mit dem gegenüberliegenden Punkt verbindet, die Seitenhalbierende der Seite c. Die Seitenhalbierende ist also eine spezielle Strecke im Dreieck. Mhh. Aber wie hilft diese Strecke Lena bei ihrem Problem? Dazu schaut sie sich an, wie man die Fläche eines Dreiecks ausrechnet. Die lässt sich bestimmen, indem man die Grundseite des Dreiecks mit seiner Höhe multipliziert und das Ergebnis durch 2 teilt. Die Seitenhalbierende teilt ein Dreieck in 2 kleinere Dreiecke. Diese haben gleich lange Grundseiten, denn die Seitenhalbierende hat die ursprüngliche Seite ja genau in der Mitte geteilt. Weil sie auch die gleiche Höhe haben sind auch die Flächen beider Dreiecke gleich groß. Genau, wie Lena das wollte! Sie weiß also, dass sie die Seitenhalbierende konstruieren muss, um ihren Campingplatz in zwei flächengleiche Dreiecke aufzuteilen. Aber wie geht das? Sie nimmt einen Zirkel und stellt eine Zirkelspanne ein, die größer als die Hälfte der Seite c ist. Ansonsten darf sie den Radius frei wählen. Um den Punkt A schlägt sie einen Kreisbogen. Jetzt darf sie die Zirkelspanne nicht mehr verändern. Nun schlägt sie um den Punkt B einen weiteren Kreisbogen. Die Kreisbögen schneiden sich in zwei Punkten. Mit Lineal oder Geodreieck können wir durch diese Punkte eine Hilfslinie einzeichnen. Ihr Schnittpunkt mit der Seite c markiert genau den Mittelpunkt der Seite. Diesen Punkt müssen wir nun noch mit dem gegenüberliegenden Eckpunkt verbinden. Bei dieser Strecke handelt es sich genau um die Seitenhalbierende der Dreiecksseite c. Die zwei entstandenen Dreiecke haben die gleiche Fläche. Wenn wir es also entlang der Seitenhalbierenden auf eine Kante legen würden, wäre es ausbalanciert. Schauen wir uns noch die anderen Seiten des Dreiecks an: Seite a besitzt ebenfalls eine Seitenhalbierende. Sie teilt das Dreieck ebenfalls in zwei flächengleiche Dreiecke. Für die Seitenhalbierende der Seite b gilt dasselbe. Der Schnittpunkt S der 3 Seitenhalbierenden ist der Schwerpunkt des Dreiecks. Legen wir das Dreieck genau in diesem Punkt auf eine Spitze, ist es ausbalanciert. Und während Lena ihren Campingplatz einteilt, fassen wir zusammen. Eine Seitenhalbierende ist eine spezielle Strecke in einem Dreieck. Sie verbindet den Mittelpunkt einer Dreiecksseite mit dem gegenüberliegenden Eckpunkt. Du kannst sie konstruieren, indem du um beide Eckpunkte der Dreiecksseite zwei Kreisbogen mit demselben Radius schlägst. Mit Hilfe der beiden Schnittpunkte kannst du den Mittelpunkt der Dreiecksseite markieren. Den Mittelpunkt verbindest du nun mit dem gegenüberliegenden Eckpunkt des Dreiecks. Die drei Seitenhalbierenden eines Dreiecks treffen sich genau in einem Punkt. Das ist der Schwerpunkt des Dreiecks. Die Aufteilung ist fertig! Juhu! Morgen sollen die ersten Gäste kommen. Doch was ist das? Na, diese Gäste haben sogar ihre Häuser mitgebracht!