Die Höhe eines Dreiecks
Entdecke im Video die Definition und Konstruktion der Höhe eines Dreiecks. Lerne, wie die Höhen senkrecht zu den Seiten verlaufen und sich im Höhenschnittpunkt treffen. XXX verstehen? Spannende Übungen und Arbeitsblätter warten auf dich!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Kongruenzsätze für Dreiecke – Überblick

Kongruenzsätze – SSS

Kongruenzsätze – WSW

Kongruenzsätze – SWS

Kongruenzsätze – SSW

Dreiecke konstruieren – Kongruenzsatz SsW

Dreiecke konstruieren – Bedingungen für Seiten und Winkel

Gleichschenklige und gleichseitige Dreiecke konstruieren

Die Höhe eines Dreiecks

Inkreis und Umkreis von Dreiecken – Überblick

Mittelpunkt eines Kreises konstruieren

Die Mittelsenkrechte

Die Winkelhalbierende

Die Seitenhalbierende

Mittelpunkt einer Strecke und Schwerpunkt eines Dreiecks

Dreiecke aus gegebenen Angaben zeichnen
Die Höhe eines Dreiecks Übung
-
Bestimme die korrekten Aussagen zur Höhe von Dreiecken.
TippsHier wurden alle Höhen eines spitzwinkligen Dreiecks eingezeichnet.
In einem rechtwinkligen Dreieck liegen zwei Seitenlängen (beispielsweise $a$ und $b$) an einem rechten Winkel an. Die Höhen dieser beiden Seitenlängen verlaufen auf jeweils der anderen Seitenlänge ($h_a$ liegt auf $b$ und andersrum).
LösungDiese Aussagen sind richtig:
„Alle drei Höhen treffen sich in genau einem Punkt, dem Höhenschnittpunkt.“
„In einem stumpfwinkligen Dreieck kommen Höhen vor, die außerhalb des Dreiecks liegen.“
„In rechtwinkligen Dreiecken liegt der Höhenschnittpunkt genau auf dem Eckpunkt, in dem der rechte Winkel liegt.“
Diese Aussagen sind falsch:
„Die Höhe $h_c$ steht senkrecht zur Seitenlänge $b$ und verläuft durch den Eckpunkt $C$.“
- Jede Höhe steht senkrecht zu einer Seitenlänge und verläuft durch den gegenüberstehenden Eckpunkt. Die Höhe $h_c$ steht also senkrecht zur Seitenlänge $c$.
- Jedes Dreieck hat genau drei Höhen. Diese können jedoch auch außerhalb des Dreiecks liegen.
-
Beschreibe die Konstruktion von Höhen in Dreiecken.
TippsDie Höhe $h_c$ ist ein Lot auf der Seitenlänge $c$, das durch den Eckpunkt $C$ verläuft.
Der Radius des ersten Kreisbogens soll so gewählt werden, dass zwei Schnittpunkte mit der Verlängerung der Seitenlänge entstehen.
LösungDen Lückentext kannst du so vervollständigen:
“Um die Höhe $h_c$ zu konstruieren, verlängere zuerst die Seitenlänge $c$. Zeichne dann einen Kreisbogen um den Eckpunkt $C$. Dieser Kreisbogen sollte die verlängerte Seitenlänge zweimal schneiden. Markiere die beiden Schnittpunkte.“
- Die Höhe $h_c$ ist ein Lot auf der Seitenlänge $c$, das durch den Eckpunkt $C$ verläuft. Das wird hier konstruiert. Mit diesem ersten Kreisbogen findest du zwei Punkte auf der Seitenlänge $c$, die den gleichen Abstand vom Eckpunkt $C$ haben.
- Das gesuchte Lot hat in jedem Punkt den gleichen Abstand zu den beiden gefundenen Schnittpunkten. Hier finden wir zwei dieser Punkte, die den gleichen Abstand zu den Schnittpunkten haben, sodass wir das Lot zeichnen können.
-
Erschließe, wo der Höhenschnittpunkt der Dreiecke liegt.
TippsDie Dreiecke kannst du anhand der Winkel unterscheiden. Ein spitzwinkliges Dreieck hat ausschließlich Winkel, die kleiner als $90^{\circ}$ sind. Ein rechtwinkliges Dreieck hat einen rechten Winkel von genau $90^{\circ}$ und ein stumpfwinkliges Dreieck hat einen Winkel, der größer als $90^{\circ}$ ist.
LösungDie Begriffe kannst du folgendermaßen zuordnen. Die Dreiecke kannst du anhand der Winkel unterscheiden. Ein spitzwinkliges Dreieck hat ausschließlich Winkel, die kleiner als $90^{\circ}$ sind. Ein rechtwinkliges Dreieck hat einen rechten Winkel von genau $90^{\circ}$ und ein stumpfwinkliges Dreieck hat einen Winkel, der größer als $90^{\circ}$ ist.
- Die Höhen $h$ spitzwinkliger Dreiecke verlaufen innerhalb des Dreiecks und der Höhenschnittpunkt $H$ liegt innerhalb des Dreiecks.
- Die Höhen $h$ stumpfwinkliger Dreiecke können außerhalb des Dreiecks verlaufen und treffen sich immer außerhalb des Dreiecks.
- Zwei Höhen $h$ von rechtwinkligen Dreiecken verlaufen auf den Seitenlinien des Dreiecks und alle Höhen treffen sich immer in einem Eckpunkt.
-
Ermittle die Höhen eines Dreiecks.
TippsDie Längen der Höhen kannst du bestimmen, indem du das Dreieck in dein Heft zeichnest und wie gewohnt die Höhen konstruierst. Dann kannst du die Längen der Höhen abmessen.
Hast du Probleme das Dreieck zu zeichnen, kannst du es in ein Koordinatensystem platzieren. Dabei liegt der Punkt $A$ bei $(0\vert0)$, $B$ bei $(0\vert7)$ und $C$ hat die Koordinaten $(3,5\vert 1,9)$.
LösungDie Längen der Höhen kannst du bestimmen, indem du das Dreieck in dein Heft zeichnest und wie gewohnt die Höhen konstruierst. Dann kannst du die Längen der Höhen abmessen.
Hast du Probleme das Dreieck zu zeichnen, kannst du es in ein Koordinatensystem platzieren. Dabei liegt der Punkt $A$ bei $(0\vert0)$, $B$ bei $(0\vert7)$ und $C$ hat die Koordinaten $(3,5\vert 1,9)$.
Damit ergeben sich folgende Höhen:
$h_a=2,6~\text{cm}$
$h_b=4,3~\text{cm}$
$h_c=1,9~\text{cm}$
-
Beschrifte das Dreieck und seine Höhen.
TippsBeachte, dass Seitenlängen immer mit einem kleinen Buchstaben bezeichnet werden.
Große Buchstaben bezeichnet die den Seitenlängen gegenüberliegenden Eckpunkte. ($b$ liegt gegenüber der Seitenlänge $B$)
LösungSo kannst du das Dreieck beschriften. Beachte, dass Seitenlängen immer mit einem kleinen Buchstaben bezeichnet werden. Dieselben großen Buchstaben bezeichnet die den Seitenlängen gegenüberliegenden Eckpunkte. Höhen werden nach der Seitenlänge bezeichnet, die senkrecht zu ihnen steht.
-
Bestimme den Flächeninhalt eines Dreieck mithilfe der Höhe.
TippsIn einem rechtwinkligen Dreieck verlaufen die Höhen der Seitenlängen, die am rechten Winkel anliegen, genau durch die jeweils andere Seitenlänge am rechten Winkel. Also ist hier $b$ die Höhe zur Seitenlänge $a$ und umgekehrt.
LösungSo kannst du den Lückentext vervollständigen:
„Um den Flächeninhalt eines Dreiecks zu bestimmen, müssen wir zuerst eine Höhe des Dreiecks bestimmen. Die Höhe $h_c$ konstruieren wir wie gewohnt durch einen Kreisbogen um den Punkt $C$. Um die beiden Schnittpunkte des Kreisbogens mit der verlängerten Seitenlänge $C$ zeichnen wir zwei weitere Kreisbogen. Durch die Schnittpunkte dieser beiden Kreisbögen zeichnen wir ein Lot. Jetzt können wir die Höhe $h_c$ abmessen. Diese beträgt: $2,4~\text{cm}$.“
- Diesen Wert erhältst du, wenn du das Lot wie beschrieben konstruierst.
$A=\frac{1}{2} \cdot g \cdot h$.
Dabei kann $g$ eine beliebige Seitenlänge sein. $h$ ist die zu dieser Seitenlänge gehörige Höhe. Bei uns lautet die Formel also:
$A=\frac{1}{2} \cdot c \cdot h_c$“
- Hier können wir jede beliebige Seitenlänge und ihre Höhe einsetzen.
$A=\frac{1}{2} \cdot 5~\text{cm} \cdot 2,4~\text{cm}=6~\text{cm}^2$“.
„Der Flächeninhalt lässt sich auch einfacher bestimmen. Verwenden wir eine der anderen Seitenlängen als Höhe, vereinfacht sich die Rechnung zu:
$A=\frac{1}{2} \cdot a \cdot b$.
Hier erhalten wir:
$A=\frac{1}{2} \cdot 3~\text{cm} \cdot 4~\text{cm}=6~\text{cm}^2$“.
- In einem rechtwinkligen Dreieck verlaufen die Höhen der Seitenlängen, die am rechten Winkel anliegen, genau durch die jeweils andere Seitenlänge am rechten Winkel. Also ist hier $b$ die Höhe zur Seitenlänge $a$ und umgekehrt. Damit vereinfacht sich die Formel zur Berechnung des Flächeninhalts, da wir keine Höhe bestimmen müssen.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt