Das Vorzeichenwechselkriterium für Extrema

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Einführung in die Kurvendiskussion

Extrema – Minimum und Maximum

Notwendige und hinreichende Bedingung für Extrema

Das Vorzeichenwechselkriterium für Extrema

Extrempunkte bestimmen – Beispiele

Verhalten ganzrationaler Funktionen im Unendlichen

Nullstellen durch Polynomdivision bestimmen

Nullstellen durch Substitution bestimmen

Nullstellen von Funktionen höheren Grades

Symmetrie von Funktionsgraphen

Achsensymmetrie und Punktsymmetrie nachweisen

Sattelpunkt berechnen

Monotoniebereiche von Funktionen bestimmen

Definitionsbereich von Funktionen

Kurvendiskussion – Übungen
Das Vorzeichenwechselkriterium für Extrema Übung
-
Vervollständige die Aussagen zu Extrema von der Funktion $f$.
TippsVor einem Hochpunkt muss die Steigung positiv sein. Nach einem Hochpunkt muss die Steigung negativ sein.
LösungDie notwendige Bendingung:
Um die Extremstellen einer Funktion zu ermitteln, verwenden wir zunächst die notwendige Bedingung:
$f'(x_E)=0$
Jede mögliche Extremstelle muss notwendigerweise eine Nullstelle der ersten Ableitung sein.Das Vorzeichenwechselkriterium:
Die Ableitung $f'(x)$ gibt die Steigung der Funktion $f(x)$ an jeder Stelle $x$ an.
Hochpunkt: Vor einem Hochpunkt muss die Steigung positiv sein. Nach einem Hochpunkt muss die Steigung negativ sein. Die erste Ableitung $f'(x)$ wechselt an einem Hochpunkt also ihr Vorzeichen von $+$ nach $-$.
Tiefpunkt: Vor einem Tiefpunkt muss die Steigung negativ sein. Nach einem Tiefpunkt muss die Steigung positiv sein. Die erste Ableitung $f'(x)$ wechselt an einem Tiefpunkt also ihr Vorzeichen von $-$ nach $+$.
Sattelpunkt: Liegt hingegen ein Sattelpunkt (auch Terrassenpunkt genannt) vor, so wechselt die erste Ableitung ihr Vorzeichen nicht.$\,$
Somit können wir folgende Sätze bilden:
- Wenn $f'(x) > 0$ für $x < x_0$, dann liegt möglicherweise bei $x_0$ ein Maximum vor.
- Wenn $f'(x) > 0$ für $x > x_0$, dann liegt möglicherweise bei $x_0$ ein Minimum vor.
- Wenn $f'(x) > 0$ für $x < x_0$ und $f'(x) < 0$ für $x > x_0$, dann liegt sicher bei $x_0$ ein Maximum vor.
- Wenn $f'(x) < 0$ für $x < x_0$ und $f'(x) > 0$ für $x > x_0$, dann liegt sicher bei $x_0$ ein Minimum vor.
- Wenn $f'(x) > 0$ für $x < x_0$ und $f'(x) > 0$ für $x > x_0$, dann liegt bei $x_0$ ein Sattelpunkt vor.
-
Bestimme Lage und Art der Extremstellen der gegebenen Funktion.
Tipps- Die erste Ableitung $f'(x)$ wechselt an einem Hochpunkt ihr Vorzeichen von $+$ nach $-$.
- Die erste Ableitung $f'(x)$ wechselt an einem Tiefpunkt ihr Vorzeichen von $-$ nach $+$.
Funktionsgraph von $f$:
LösungUm die Extremstellen einer Funktion zu ermitteln, verwenden wir zunächst die notwendige Bedingung:
$f'(x_E)=0$Um zu überprüfen, ob es sich bei den Nullstellen der Ableitung tatsächlich um Extrema handelt, wenden wir das Vorzeichenwechselkriterium an:
- Die erste Ableitung $f'(x)$ wechselt an einem Hochpunkt ihr Vorzeichen von $+$ nach $-$.
- Die erste Ableitung $f'(x)$ wechselt an einem Tiefpunkt ihr Vorzeichen von $-$ nach $+$.
Wir betrachten damit die gegebene Funktion $f(x)=\dfrac{2}{3}x^3-x^2-4x+ \dfrac{11}{3}$:
$1$. Wir ermitteln die erste Ableitung:
$f'(x)=2x^2-2x-4$$2$. Wir bestimmen die Nullstellen der ersten Ableitung:
$\begin{array}{rrllr} 2x^2-2x-4 & = & 0 & |:2& \\ x^2-x-2 & = & 0 & & \\ x_{1/2} & = & \dfrac{1}{2} \pm \sqrt{\left(\dfrac{1}{2}\right)^2+2}& \text{Anwenden der pq-Formel}& \\ x_{1/2} & = & \dfrac{1}{2} \pm \sqrt{2\dfrac{1}{4}}& & \\ x_{1/2} & = & \dfrac{1}{2} \pm 1\dfrac{1}{2}& & \\ \end{array}$
$x_1 = 2 \quad x_2 = -1$
$3$. Wir wenden das Vorzeichenwechselkriterium an:
Wir setzen Werte in die erste Ableitung ein, die etwas kleiner und etwas größer als die Nullstellen sind.$f'(1{,}9) \approx -0{,}6\quad f'(2{,}1) \approx 0{,}6$
Es liegt ein Vorzeichenwechsel von $-$ nach $+$ vor, daher handelt es sich bei $x_{1}=2$ um ein Minimum.$f'(-1{,}1) \approx 0{,}6\quad f'(-0{,}9)= -0{,}6$
Es liegt ein Vorzeichenwechsel von $+$ nach $-$ vor, daher handelt es sich bei $x_{2}=-1$ um ein Maximum. -
Untersuche, bei welchen Punkten es sich um Maxima, Minima oder Sattelpunkte der Funktion handelt.
TippsJede mögliche Extremstelle muss notwendigerweise eine Nullstelle der ersten Ableitung sein: $f'(x)=0$
Nullstellen der ersten Ableitung können wiederum Maxima, Minima oder Sattelpunkte sein.Berechne zuerst die erste Ableitung jeder Funktion. Wende dann das Vorzeichenwechselkriterium an.
LösungExtrema untersuchen:
Jede mögliche Extremstelle muss notwendigerweise eine Nullstelle der ersten Ableitung sein: $f'(x)=0$
Nullstellen der ersten Ableitung können wiederum Maxima, Minima oder Sattelpunkte sein.
Die erste Ableitung $f'(x)$ wechselt an einem Hochpunkt ihr Vorzeichen von $+$ nach $-$.
Die erste Ableitung $f'(x)$ wechselt an einem Tiefpunkt ihr Vorzeichen von $-$ nach $+$.
Liegt hingegen ein Sattelpunkt vor, so wechselt die erste Ableitung ihr Vorzeichen nicht.Wir überprüfen zuerst, ob der Punkt auf der Funktion liegt, indem wir den $y$-Wert überprüfen. Dann berechnen wir von den gegebenen Funktionen zuerst die erste Ableitung $f'(x)$ und überprüfen, ob diese an den gegebenen Punkt den Wert $0$ annimmt. Ist dies der Fall, überprüfen wir das Vorzeichenwechselkriterium, indem wir Werte etwas kleiner und etwas größer als der gegebene $x$-Wert in die erste Ableitung einsetzen:
1. Funktion: $f(x)=4x^3-3x$
Funktionswerte: $f(0{,}5)= 4 \cdot 0{,}5^3-3 \cdot 0{,}5 = -1$ und $f(-0{,}5)= 4 \cdot (-0{,}5)^3-3 \cdot (-0{,}5) = 1$
erste Ableitung: $f'(x)= 12x^2-3$
$f'(0{,}5)=0 \quad$ Vorzeichenwechselkriterium: $f'(0{,}4)=-1{,}08 $ und $ f'(0{,}6)= 1{,}32$
$\rightarrow$ Minimum bei $P_1(0{,}5|{-}1)$
$f'(-0,5)=0 \quad$ Vorzeichenwechselkriterium: $f'(-0{,}6)=1{,}32 $ und $f'(-0{,}4)= -1{,}08$
$\rightarrow$ Maximum bei $P_2(-0{,}5|1)$2. Funktion: $f(x)=3x^3-5$
Funktionswerte: $f(0)=3 \cdot 0^3-5=-5$ und $f(-1)=3 \cdot (-1)^3-5=-8$
erste Ableitung: $f'(x)= 9x^2$
$f'(0)=0 \quad$ Vorzeichenwechselkriterium: $f'(-0{,}1)=0{,}09 $ und $f'(0{,}1)= 0{,}09$
$\rightarrow$ Sattelpunkt bei $P_1(0|{-}5)$
$f'(-1)=9$
$\rightarrow$ kein Extremum oder Sattelpunkt bei $P_2(-1|{-}8)$3. Funktion: $f(x)=x^5-5x^4+5x^3+8$
Funktionswerte: $f(0)= 0^5-5 \cdot 0^4 + 5 \cdot 0^3 +8 = 8$
$\rightarrow$ Der Punkt $P_1(0|9)$ liegt nicht auf dem Funktionsgraphen, und ist daher weder Maximum, Minimum noch Sattelpunkt.
$f(1)= 1^5-5 \cdot 1^4 + 5 \cdot 1^3 +8 = 9$ und $f(3)= 3^5-5 \cdot 3^4 + 5 \cdot 3^3 +8 = -19$
erste Ableitung: $f'(x)= 5x^4-20x^3+15x^2$
$f'(1)=0 \quad$ Vorzeichenwechselkriterium: $f'(0{,}9)=0{,}8505 $ und $f'(1{,}1)= -1{,}1495$
$\rightarrow$ Maximum bei $P_2(1|9)$
$f'(3)=0 \quad$ Vorzeichenwechselkriterium: $f'(2{,}9)=-7{,}9895 $ und $f'(3{,}1)= 10{,}0905$
$\rightarrow$ Minimum bei $P_3(3|{-}19)$ -
Ermittle den Hochpunkt und den Tiefpunkt der gegebenen Funktion.
TippsUm eine Funktion auf Extrema zu untersuchen, bestimmen wir zunächst die erste Ableitung und ermitteln deren Nullstellen.
Du kannst die Nullstellen der ersten Ableitung ermitteln, indem du die Gleichung zunächst so umformst, dass der Koeffizient vor dem $x^2$ gleich $1$ ist und dann die $pq$-Formel anwendest:
$x_{1/2} = -\dfrac{p}{2} \pm \sqrt{\left(\dfrac{p}{2}\right)^2-q}$
LösungUm eine Funktion auf Extrema zu untersuchen, bestimmen wir zunächst die erste Ableitung und ermitteln deren Nullstellen. Jede mögliche Extremstelle muss notwendigerweise eine Nullstelle der ersten Ableitung sein: $f'(x)=0$
Nullstellen der ersten Ableitung können wiederum Maxima, Minima oder Sattelpunkte sein. Dies können wir mit dem Vorzeichenwechselkriterium überprüfen:
Die erste Ableitung $f'(x)$ wechselt an einem Hochpunkt ihr Vorzeichen von $+$ nach $-$ und an einem Tiefpunkt ihr Vorzeichen von $-$ nach $+$. Liegt hingegen ein Sattelpunkt vor, so wechselt die erste Ableitung ihr Vorzeichen nicht. Wir überprüfen das Vorzeichenwechselkriterium, indem wir Werte etwas kleiner und etwas größer als die ermittelte Nullstelle in die erste Ableitung einsetzen:$f(x)=\dfrac{2}{3}x^3+x^2-24x-1$
Erste Ableitung:
$f'(x)= 2x^2+2x-24$Nullstellen der ersten Ableitung:
$\begin{array}{rrllr} 2x^2+2x-24 & = & 0 & |:2& \\ x^2+x-12 & = & 0 & & \\ x_{1/2} & = & -\dfrac{1}{2} \pm \sqrt{\left(\dfrac{1}{2}\right)^2+12}& \text{Anwenden der pq-Formel}& \\ x_{1/2} & = & -\dfrac{1}{2} \pm \sqrt{12\dfrac{1}{4}}& & \\ x_{1/2} & = & -\dfrac{1}{2} \pm 3\dfrac{1}{2}& & \\ \end{array}$$\Rightarrow \quad x_1 = 3 \quad x_2 = {-}4$
Vorzeichenwechselkriterium:
$f'(2{,}9)=-1{,}38 $ und $f'(3{,}1)= 1{,}42$
$\rightarrow$ Minimum
$f'(-4{,}1)=1{,}42 $ und $f'(-3{,}9)= -1{,}38$
$\rightarrow$ MaximumBerechnung der $\mathbf{y}$-Werte:
$f(3)=\dfrac{2}{3} \cdot 3^3+3^2-24 \cdot 3-1 = -46$
$f(-4)=\dfrac{2}{3} \cdot (-4)^3+(-4)^2-24 \cdot (-4) -1 = 68\dfrac{1}{3} \approx 68{,}3$Angabe der Extrempunkte:
Hochpunkt: $H(-4|68{,}3)$
Tiefpunkt: $T(3|{-}46)$ -
Beschreibe das Vorgehen zur Bestimmung eines Extrempunktes.
TippsUm die Extrempunkte zu bestimmen, musst du die Nullstellen der ersten Ableitung ermitteln.
Als letzten Schritt bestimmst du die zu den Extremstellen zugehörigen Funktionswerte.
LösungUm die Extrempunkte einer Funktion zu ermitteln, bestimmen wir die Nullstellen der ersten Ableitung und überprüfen anschließend, ob es sich hierbei tatsächlich um Extrema handelt. Wir betrachten das Vorgehen am Beispiel
$f(x)=\dfrac{2}{3}x^3-x^2-4x+ \dfrac{11}{3}$
Im Detail gehen wir wie folgt vor:
$1$. Wir ermitteln die erste Ableitung:
$f'(x)=2x^2-2x-4$$2$. Wir bestimmen die Nullstellen der ersten Ableitung, indem wir die Gleichung $f'(x)=0$ lösen:
$\begin{array}{rrllr} 2x^2-2x-4 & = & 0 & |:2& \\ x^2-x-2 & = & 0 & & \\ x_{1/2} & = & \dfrac{1}{2} \pm \sqrt{\left(\dfrac{1}{2}\right)^2+2}& \text{Anwenden der pq-Formel}& \\ x_{1/2} & = & \dfrac{1}{2} \pm \sqrt{2\dfrac{1}{4}}& & \\ x_{1/2} & = & \dfrac{1}{2} \pm 1\dfrac{1}{2}& & \\ \end{array}$
$x_1 = 2 \quad x_2 = -1$
$3$. Wir wenden das Vorzeichenwechselkriterium an:
Wir setzen Werte in die erste Ableitung ein, die etwas kleiner und etwas größer als die Nullstellen sind.$f'(1{,}9) \approx -0,6\quad f'(2{,}1) \approx 0{,}6$
Es liegt ein Vorzeichenwechsel von $-$ nach $+$ vor, daher handelt es sich bei $x_{1}=2$ um ein Minimum.$f'(-1{,}1) \approx 0{,}6\quad f'(-0{,}9)= -0{,}6$
Es liegt ein Vorzeichenwechsel von $+$ nach $-$ vor, daher handelt es sich bei $x_{2}=-1$ um ein Maximum.$4$. Wir bestimmen die Funktionswerte, also die $y$-Werte:
Wir setzen die ermittelten $x$-Werte in die Funktionsgleichung ein:
$f(2)= \dfrac{2}{3} \cdot 2^3-2^2-4 \cdot 2+\dfrac{11}{3} = -3$
$f(-1)= \dfrac{2}{3} \cdot (-1)^3-(-1)^2-4 \cdot (-1)+\dfrac{11}{3} = 6$Die Extrempunkte in unserem Beispiel sind also:
Minimum: $(2|{-}3)$
Maximum: $({-}1|6)$ -
Leite aus dem Ableitungsgraphen $f'$ die Anzahl der Extrema und Sattelpunkte von $f$ her.
TippsDie Ableitung $f'(x)$ gibt die Steigung der Funktion $f(x)$ an jeder Stelle $x$ an.
Vor einem Tiefpunkt muss die Steigung negativ sein. Nach einem Tiefpunkt muss die Steigung positiv sein. Die erste Ableitung $f'(x)$ wechselt an einem Tiefpunkt also ihr Vorzeichen von $-$ nach $+$.
Liegt ein Sattelpunkt vor, so hat der Graph der Ableitung eine Nullstelle ohne Vorzeichenwechsel.
LösungDie Ableitung $f'(x)$ gibt die Steigung der Funktion $f(x)$ an jeder Stelle $x$ an. Nullstellen der ersten Ableitung können daher Maxima, Minima oder Sattelstellen sein.
Hochpunkt: Vor einem Hochpunkt muss die Steigung positiv sein. Nach einem Hochpunkt muss die Steigung negativ sein. Die erste Ableitung $f'(x)$ wechselt an einem Hochpunkt also ihr Vorzeichen von $+$ nach $-$.
Tiefpunkt: Vor einem Tiefpunkt muss die Steigung negativ sein. Nach einem Tiefpunkt muss die Steigung positiv sein. Die erste Ableitung $f'(x)$ wechselt an einem Tiefpunkt also ihr Vorzeichen von $-$ nach $+$.
Sattelpunkt: Liegt hingegen ein Sattelpunkt vor, so hat der Graph einen Berührpunkt mit der $x$-Achse, also eine Nullstelle ohne Vorzeichenwechsel.1. Graph:
Der Graph hat $2$ Nullstellen.
An der linken Nullstelle schneidet der Graph die $x$-Achse nicht. $\rightarrow$ Sattelpunkt
An der rechten Nullstelle verläuft der Graph vom Positiven ins Negative. $\rightarrow$ Maximum- Anzahl der Maxima: $1$
- Anzahl der Minima: $0$
- Anzahl der Sattelpunkte: $1$
2. Graph:
Der Graph hat $2$ Nullstellen.
An beiden Nullstellen schneidet der Graph die $x$-Achse nicht. $\rightarrow$ Sattelpunkte- Anzahl der Maxima: $0$
- Anzahl der Minima: $0$
- Anzahl der Sattelpunkte: $2$
3. Graph:
Der Graph hat $2$ Nullstellen.
An der linken Nullstelle verläuft der Graph vom Negativen ins Positive. $\rightarrow$ Minimum
An der rechten Nullstelle verläuft der Graph vom Positiven ins Negative. $\rightarrow$ Maximum- Anzahl der Maxima: $1$
- Anzahl der Minima: $1$
- Anzahl der Sattelpunkte: $0$
4. Graph:
Der Graph hat $3$ Nullstellen.
An der mittleren Nullstelle verläuft der Graph vom Negativen ins Positive. $\rightarrow$ Minimum
An der linken und rechten Nullstelle verläuft der Graph vom Positiven ins Negative. $\rightarrow$ Maxima- Anzahl der Maxima: $2$
- Anzahl der Minima: $1$
- Anzahl der Sattelpunkte: $0$
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt