Symmetrie von Funktionsgraphen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Symmetrie von Funktionsgraphen
Nach dem Schauen dieses Videos wirst du in der Lage sein, die Symmetrie von Funktionsgraphen durch eine Untersuchung der Funktionsgleichung zu bestimmen.
Zunächst lernst du, welche verschiedenen Arten der Symmetrie es bei Funktionen gibt.
Anschließend geht es darum, wie sich Achsensymmetrie zur y-Achse und Punktsymmetrie zum Ursprung aus den Funktionswerten ergeben.
Abschließend lernst du, wie du durch Einsetzen von x und -x die Symmetrie einer Funktion überprüfen und bestimmen kannst.
Lerne etwas über die Schönheit und den Nutzen von Symmetrie.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Achsensymmetrie, Punktsymmetrie, Ursprung, Achse, Drehung, Spiegelung, Verschiebung, Koordinatensystem, Gegenzahl, Funktionswert, Funktionsgraph und Funktionsgleichung.
Bevor du dieses Video schaust, solltest du bereits wissen, wie man mit Funktionstermen rechnet.
Nach diesem Video wirst du darauf vorbereitet sein, weitere Schritte der Kurvendiskussion bzw. Analysis von ganzrationalen Funktionen zu lernen.
Transkript Symmetrie von Funktionsgraphen
SYMMETRIE finden wir überall in der Welt: Bei den Tieren, den Pflanzen, und auch wenn wir Menschen etwas bauen, sieht es einfach besser aus und funktioniert oft auch besser, wenn die Dinge eine Ordnung haben. Das gilt auch für die "Symmetrie von Funktionsgraphen", um die es in diesem Video geht. Aber was ist damit eigentlich gemeint? Sehen wir uns mal ein paar Funktionsgraphen an. Welche davon sehen für dich "symmetrisch" aus? Und worauf bezieht sich die Symmetrie? Nehmen wir mal diesen hier. Der Graph wird durch die "y-Achse" in der Mitte geteilt, und die linke und rechte Seiten sehen genau gleich aus. Genauer gesagt: Die rechte Seite ist die "Spiegelung" der linken Seite an der y-Achse. Der Graph ist also "ACHSENsymmetrisch" zur y-Achse. Er wäre auch IMMER NOCH achsensymmetrisch, wenn er an eine ANDERE Stelle im Koordinatensystem verschoben wäre, dann allerdings symmetrisch zu einer ANDEREN Achse, wie in diesem Beispiel zu "x gleich Minus-zwei". Sehen wir uns noch einen anderen Funktionsgraphen an. Was ist mit DIESEM hier? Sieht doch auch irgendwie symmetrisch aus – allerdings nicht achsensymmetrisch. Dieser Graph ist "punktsymmetrisch" zum Koordinatenursprung. Das heißt, jede Stelle des Graphen kann über eine Linie durch den Ursprung genau auf die andere Seite gespiegelt werden. Oder anders gesagt: Nach einer "Drehung" um 180 Grad sieht der Graph wieder genau aus wie vorher. Auch punktsymmetrische Graphen können an verschiedene Stellen im Koordinatensystem verschoben werden. Sie BLEIBEN punktsymmetrisch; das Spiegelzentrum ist dann allerdings ein anderes, wie in diesem Beispiel der Punkt "Minus-zwei, eins" Achsensymmetrie und Punktsymmetrie kann man einigermaßen gut erkennen, wenn man die Graphen vor sich hat. Aber wie ist es, wenn nur die FunktionsGLEICHUNGEN bekannt sind? Das ist bei den vielen möglichen Symmetrieachsen und -punkten ziemlich schwierig, es klappt aber ganz gut, wenn wir nur die beiden einfachsten Fälle von Symmetrie betrachten: Also Punktsymmetrie zum URSPRUNG und Achsensymmetrie zur Y-ACHSE. Nehmen wir mal DIESE Funktionsgleichung. Das ist eine QUADRATISCHE Funktion, also eine Parabel. Wenn wir ein paar Werte für "x" einsetzen und die "y"-Werte berechnen, SEHEN wir das auch – sieht ziemlich achsensymmetrisch aus, oder? Aber wie zeigt sich das allein an den berechneten Werten? Es ist auffällig, dass die "y"-Werte immer paarweise gleich sind. Und zwar immer dann, wenn die "x"-Werte genau die "Gegenzahlen" zueinander sind. Also "x" und "Minus-x" führen jeweils zum selben "y"-Wert. Da "y" nichts anderes ist als "f von x", lässt sich dieser Zusammenhang ausdrücken als "f von x" ist gleich "f von Minus-x". Du kannst also in die Funktionsgleichung für "x" die Gegenzahl "Minus-x" einsetzen und prüfen, ob der Term durch Ausklammern und Vereinfachen, auf die ursprüngliche Form von "f von x" gebracht werden kann. Erhältst du für "f von x" und "f von Minus-x" identische Funktionsterme, wie HIER, ist der Funktionsgraph "achsensymmetrisch zur y-Achse". Okay, wie ist es bei der PUNKTsymmetrie zum Ursprung? Nehmen wir DIESE Funktionsgleichung als Beispiel. Das ist eine Funktion DRITTEN Grades, eine sogenannte KUBISCHE Funktion. Setzen wir wieder ein paar Werte für "x" ein, berechnen die "y"-Werte und zeichnen den Funktionsgraphen! Alles klar, sieht punktsymmetrisch aus. Was fällt bei den Werten auf? Wenn wir hier einen "x"-Wert und dessen Gegenzahl "Minus-x" betrachten, sind auch die jeweiligen "y"-Werte Gegenzahlen zueinander. Es gilt also: "f von x" ist gleich "MINUS-f von Minus-x". Wenn du also in die Funktionsgleichung "Minus-x" einsetzt, und durch Ausklammern und Vereinfachen, genau auf den NEGATIVEN Term von "f von x" kommst, wie HIER, wird der Funktionsgraph "punktsymmetrisch zum Ursprung" sein. Rechnen wir das mal an einer neuen Beispielfunktion durch. Wenn wir "Minus-x" einsetzen, können wir die Minuszeichen aus den ungeraden Potenzen nach vorne ziehen. Wenn wir jetzt das "Minus" ausklammern, wird schon ein Unterschied zwischen den beiden Funktionstermen deutlich. Wenn wir beispielsweise für "x" EINS beziehungsweise "MINUS-eins" wählen, kommen wir auf zwei VERSCHIEDENE Ergebnisse. Diese Funktion ist also weder achsensymmetrisch, noch punktsymmetrisch. Wobei, halt! Die Funktion könnte immer noch symmetrisch zu einer anderen Achse oder zu einem anderen Punkt als dem Ursprung sein. In der Schule werden aber in der Regel nur die beiden genannten Fälle von Symmetrie behandelt, deshalb wird alles andere oft einfach als "nicht symmetrisch" bezeichnet. Fassen wir also zusammen: Es gibt zwei Arten von Symmetrien bei Funktionsgraphen, die wir jetzt beschreiben können: Achsensymmetrie zur y-Achse, also eine Spiegelung, und Punktsymmetrie zum Koordinatenursprung, also eine Drehung um 180 Grad. Ob eine dieser beiden Symmetrien vorliegt, prüfst du, indem du "Minus-x" in die Funktionsgleichung einsetzt, den Term vereinfachst und mit "f von x" vergleichst. Gilt "f von x" gleich "f von Minus-x", ist die Funktion "achsensymmetrisch zur y-Achse". Gilt "f von x" gleich "MINUS-f von Minus-x", ist die Funktion "punktsymmetrisch zum Ursprung". In allen anderen Fällen liegt KEINE Symmetrie vor. Aber auch "Asymmetrie" hat ja was für sich Manchmal ist das sogar NOCH schöner!
-
sehr gut erklärt
Symmetrie von Funktionsgraphen Übung
-
Gib die Art der Symmetrie der Funktionsgraphen an.
-
Beschreibe das Vorgehen zur Überprüfung der Achsensymmetrie zur -Achse.
-
Entscheide, welche Art von Symmetrie die Funktionsgraphen aufweisen.
-
Überprüfe, ob die Funktionen punktsymmetrisch zum Koordinatenursprung oder achsensymmetrisch zur -Achse sind.
-
Bestimme die symmetrischen Funktionsgraphen.
-
Untersuche die Symmetrie der Graphen anhand der Funktionsgleichung.
9.256
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.174
Lernvideos
38.660
Übungen
33.472
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel