Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Sattelpunkt berechnen

Ein Sattelpunkt ist ein einzigartiger Punkt auf einem Graphen, der oft mit anderen Wendepunkten verwechselt wird. Er hat zwar eine Steigung von null, dennoch ist er kein Hoch- oder Tiefpunkt. Erfahre, wie du mit verschiedenen Methoden Sattelpunkte berechnen kannst. Neugierig geworden? Lies weiter!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Sei der Erste und gib eine Bewertung ab!
Die Autor*innen
Avatar
sofatutor Team
Sattelpunkt berechnen
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Sattelpunkt berechnen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Lerntext Sattelpunkt berechnen kannst du es wiederholen und üben.
  • Tipps

    Zwei der Aussagen treffen auf den Sattelpunkt zu.

    Lösung

    In einem Sattelpunkt gibt es eine waagerechte Tangente und das Krümmungsverhalten ändert sich.

    Die beiden anderen Eigenschaften gelten für einen Extrempunkt, aber nicht für einen Sattelpunkt.

  • Tipps

    Zwei der Bedingungen müssen erfüllt sein, damit ein Sattelpunkt vorliegt.

    Lösung

    Wenn folgende Bedingungen an der Stelle $x\_S$ erfüllt sind, liegt ein Sattelpunkt vor:

    • $f^{\prime\prime}(x_S)= 0$ und $f^{\prime\prime\prime}(x_S)\neq 0$
    (Dieses sind die Bedingungen für die Existenz eines Wendepunkts.)
    • $f^{\prime}(x_S)= 0$
    (Dieses ist die Bedingung für das Vorliegen einer waagerechten Tangente.)
  • Tipps

    Das Vorzeichen der ersten Ableitung gibt an, ob der Wert größer oder kleiner null ist und ob die Funktion an dieser Stelle steigend oder fallend verläuft.

    Ein Sattelpunkt liegt dann vor, wenn es keinen Vorzeichenwechsel gibt.

    Lösung

    Erster Abschnitt

    Gegeben ist die Funktion $f(x)=x^2+3$.

    Die erste Ableitung lautet $f^{\prime}(x)=2x$.

    Die Nullstelle der ersten Ableitung liegt bei $x_s=0$.

    Zur Überprüfung, ob ein Vorzeichenwechsel vorliegt, setzen wir Zahlen ein, die kleiner bzw. größer als $x_s$ sind.

    $f^{\prime}(-1)=-2 \implies f^{\prime}(-1)<0 \implies f$ ist fallend.

    $f^{\prime}(1)=2 \implies f^{\prime}(1) >0 \implies f$ ist steigend.

    Da für die erste Ableitung an der Stelle $x_S$ ein Vorzeichenwechsel vorliegt, liegt kein Sattelpunkt vor.

    Stattdessen liegt hier ein Tiefpunkt vor!

    Zweiter Abschnitt

    Gegeben ist die Funktion $f(x)=x^3+2$.

    Die erste Ableitung lautet $f^{\prime}(x)=3x^2$.

    Die Nullstelle der ersten Ableitung liegt bei $x_s=0$.

    Zur Überprüfung, ob ein Vorzeichenwechsel vorliegt, setzen wir Zahlen ein, die kleiner bzw. größer als $x_s$ sind.

    $f^{\prime}(-1)=3 \implies f^{\prime}(-1)>0 \implies f$ ist steigend.

    $f^{\prime}(1)=3 \implies f^{\prime}(1) >0 \implies f$ ist steigend.

    Da für die erste Ableitung an der Stelle $x_S$ kein Vorzeichenwechsel vorliegt, liegt hier ein Sattelpunkt vor.

  • Tipps

    Die erste Ableitung lautet $f^{\prime}(x)=-6x^2+12x-6$.

    Die Nullstelle der zweiten Ableitung liegt bei $x_S=1$.

    Lösung

    Schritt 1

    Bilde die Ableitungen der Funktion.

    $f^{\prime}(x)=-6x^2+12x-6$

    $f^{\prime\prime}(x)=-12x+12$

    $f^{\prime\prime\prime}(x)=-12$

    Schritt 2

    Bestimme die Nullstelle der zweiten Ableitung:

    $f^{\prime\prime}(x)=0$

    $-12x+12=0 \quad\vert -12$

    $-12x=-12 \quad\vert :(-12)$

    $x=1$

    Schritt 3

    Setze die Nullstellen der zweiten Ableitung in die dritte Ableitung ein:

    $f^{\prime\prime\prime}(1)=-12$

    Der Wert ist ungleich null, also liegt ein Wendepunkt vor.

    Setze die Nullstelle der zweiten Ableitung in die erste Ableitung ein:

    $f^{\prime}(1)=-6\cdot 1^2+12\cdot 1-6$

    Der Wert ist gleich null, also liegt eine waagerechte Tangente vor und es handelt sich um den Spezialfall des Wendepunkts, den Sattelpunkt.

    Schritt 4

    Bestimme die $y$-Koordinate:

    $f(1)=-2\cdot 1^3+6\cdot 1^2-6\cdot 1+6=4$

    Der Sattelpunkt liegt bei $S(1\vert 4)$.

  • Tipps

    Zwei der Bezeichnungen sind korrekt.

    Lösung

    Sattelpunkte werden auch als Terrassenpunkte oder Horizontalwendepunkte bezeichnet.

    Obwohl in einem Sattelpunkt die Tangente waagerecht ist, handelt es sich nicht um einen Extrempunkt. Auch die Bezeichnung Wendepunkt passt nicht, da der Sattelpunkt ein Spezialfall des Wendepunkt ist und als weitere Eigenschaft noch eine waagerechte Tangente aufweist.

  • Tipps

    Zu jedem Verfahren gehören drei aufeinander aufbauende Schritte.

    Lösung

    Bestimmung des Sattelpunkt mit dem Vorzeichenwechselkriterium:

    1. Bestimme die erste Ableitung der Funktion.
    2. Berechne die Nullstellen der ersten Ableitung: $f^{\prime}(x)=0$ (notwendige Bedingung). Die Lösungen der Gleichung sind Kandidaten $x_S$ für einen Sattelpunkt.
    3. Prüfe, ob ein Vorzeichenwechsel (VZW) der ersten Ableitung an der Stelle $x_S$ vorliegt. Wenn es keinen VZW gibt, ist die hinreichende Bedingung erfüllt.

    Bestimmung des Sattelpunkt mit den hinreichenden Bedingungen:

    1. Bestimme die ersten drei Ableitungen der Funktion.
    2. Bestimme die Nullstellen der zweiten Ableitung: $f^{\prime\prime}(x)=0$.
    3. Prüfe, ob an der der Stelle $x_S$ die dritte Ableitung ungleich null ($f^{\prime\prime\prime}(x_S)\neq 0$) ist – dann liegt ein Wendepunkt vor und ob die erste Ableitung gleich null ($f^{\prime}(x_S)= 0$) ist – dann ist der Wendepunkt ein Sattelpunkt.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden