Terme vereinfachen
Lerne, wie du Terme spielend leicht vereinfachen kannst: von der Auflösung von Klammern mit dem Distributivgesetz, über das Sortieren nach dem Kommutativgesetz, bis hin zum Zusammenfassen gleichartiger Terme. Diese Schritte machen es einfach, selbst komplizierte mathematische Ausdrücke zu verstehen und zu vereinfachen. Interessiert? Dies und viele praktische Übungen findest du im folgenden Text!
- Terme vereinfachen – Definition
- Terme vereinfachen – Regeln
- Gleichartige Terme vereinfachen
- Terme mit einer Variablen vereinfachen
- Terme mit mehreren Variablen vereinfachen
- Terme vereinfachen unter Einhaltung der Reihenfolge – Beispiel
- Terme vereinfachen – Übungen
- Ausblick – das lernst du nach Terme vereinfachen
- Zusammenfassung – Terme vereinfachen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Was ist ein Term?

Rechenregeln in Termen

Terme vereinfachen

Terme durch Rechenbäume beschreiben

Rechenbäume lösen

Terme aufstellen und berechnen

Aus gegebenen Daten Terme aufstellen und berechnen

Schlüsselwörter für Addition und Subtraktion

Termumformungen ohne Variablen

Termumformungen mit Variablen
Terme vereinfachen Übung
-
Ergänze die Erklärung, ob die beiden Terme $3x$ und $2y$ zusammengefasst werden dürfen.
TippsDu kannst dir das so überlegen:
- Die Variable $x$ entspricht dem Pinguin.
- Die Variable $y$ entspricht dem Hai.
Ein anderes Beispiel: Wenn du zu zwei Handys fünf Handys dazutust, hast du sieben Handys.
Wie sieht es aber aus, wenn du zu zwei Handys fünf Taschenrechner dazutust? Das kannst du nicht weiter zusammenfassen.
$3x+2x$ kann vereinfacht werden, da die Terme $3x$ und $2x$ gleichartig sind:
$3x+2x=5x$.
LösungMerke dir:
Du kannst Terme nur dann zusammenfassen, also addieren oder subtrahieren, wenn sie gleichartig sind.
Zum Beispiel ist $3x+2x=5x$.
Das ist wie bei Pinguinen. Wenn du beispielsweise $3$ Pinguine auf einer Eisscholle und $2$ Pinguine unter Wasser siehst, sind das insgesamt $5$ Pinguine.
Du kannst allerdings nicht Pinguine mit Haien kombinieren. Diese Erfahrung hat auch Dr. Evil gemacht. Was bedeutet das mathematisch?
Fasse nur Terme zusammen, die gleichartig sind, also genau die gleichen Variablen enthalten.
-
Fasse den Term $x+3\cdot(10+y)-7x-y$ zusammen.
TippsDas Distributivgesetz verwendest du, um Klammerterme auszumultiplizieren:
$a(b+c)=ab+ac$.
Den Faktor vor einer Variablen nennt man Koeffizient. Der Koeffizient von $x$ bei dem Term $5x$ ist also $5$.
Wenn du Terme addierst, in welchen die Variablen gleich sind, kannst du die Koeffizienten addieren. Das gilt natürlich auch, wenn du subtrahierst.
Schaue dir hierfür ein Beispiel an:
$2x+3x=(2+3)x=5x$.
Wenn in einem Term nur noch verschiedenartige Terme vorkommen, dann kannst du nicht weiter vereinfachen.
LösungHier kannst du die komplette Rechnung sehen.
Du startest mit dem Ausmultiplizieren. Hierfür verwendest du das Distributivgesetz: Du multiplizierst die beiden Summanden $10$ und $y$ in der Klammer mit dem Faktor $3$. Du erhältst als Zwischenschritt:
$x+3\cdot (10+y)-7x-y=$ $x+30+3y-7x-y$.
Merke dir, dass du nur Terme zusammenfassen kannst, in denen die Variablen gleich sind. Stelle also den Term so um, dass die gleichen Terme mit den gleichen Variablen hintereinander stehen. Du verwendest hier das Kommutativgesetz. Vielleicht kennst du dieses auch unter dem Namen Vertauschungsgesetz. Dies ergibt folgenden Zwischenschritt:
$x+30+3y-7x-y=x-7x+3y-y+30$.
Nun kannst du zusammenfassen. Addiere oder subtrahiere hierfür die Koeffizienten, also die Faktoren vor den Variablen:
$x-7x+3y-y+30=-6x+2y+30$.
Nun bist du fertig. Du kannst diesen Term nicht weiter vereinfachen.
-
Prüfe, welche Terme gleichartig sind.
TippsBeachte: In dem Term $xy$ kommen sowohl $x$ als auch $y$ vor.
Terme mit einem $xy$ können also weder mit Termen, die nur ein $x$, noch mit Termen, die nur ein $y$ enthalten, zusammengefasst werden.
Sie können aber natürlich mit anderen Termen, die auch $xy$ enthalten, zusammengefasst werden.
So gilt beispielsweise $8xy - 6xy = 2xy$.
Schaue dir die folgenden Beispiele an:
- $5x$ und $8x$ sind gleichartige Terme.
- $5x$ und $8y$ sind nicht gleichartig.
In gleichartigen Termen stimmen sowohl die Variablen als auch die Exponenten überein:
- $3x$ und $4x^2$ sind nicht gleichartig.
- $5xy$ und $7xy$ sind gleichartig.
- $6y^2$ und $-3y^2$ sind gleichartig.
LösungUm Terme zu vereinfachen, musst du dir Folgendes merken: Du darfst nur Terme zusammenfassen, die gleichartig sind.
Fasse niemals Terme zusammen, die verschiedenartig sind.
Hier kannst du üben, welche Terme zusammengefasst werden können.
Nachdem du die Terme, die zusammengefasst werden können, markiert hast, kannst du sie hintereinander schreiben und zusammenfassen.
- Wir starten mit dem Term $3x+4y-7xy+7+3y-x-5x^2-5$. Nun sortieren wir die Terme nach ihrer Gleichartigkeit. Das ergibt den Term $3x-x+4y+3y+7-5-7xy-5x^2$. Nun kannst du zusammenfassen zu $2x+7y+2-7xy-5x^2$.
- Wir starten mit dem Term $5xy+7x-7+7+3x-4y-5y^2+2y$. Umsortieren ergibt $7x+3x-4y+2y-7+7+5xy-5y^2$. Auch diesen Term kannst du vereinfachen zu $10x-2y+5xy-5y^2$.
- Wir beginnen mit $12-3x-5y^2+8x-6xy-7y+2y-8$. Umsortieren führt zu $-3x+8x-7y+2y+12-8-5y^2-6xy$. Fasse die gleichartigen Terme zusammen: $5x-5y+4-5y^2-6xy$.
Du kannst beim Üben gleichartige Terme immer mit der gleichen Farbe markieren, dann fällt das Zusammenfassen etwas leichter.
-
Fasse die Terme zusammen.
TippsDu kannst Terme nur dann zusammenfassen, wenn sie gleichartig sind.
Denke daran: Das Kombinieren von Pinguinen und Haien ist schiefgelaufen.
Du kannst auch Zahlen zusammenfassen, wenn sie nicht gemeinsam mit einer Variablen als Produkt auftauchen.
Betrachte zum Beispiel $2+x+7 = 9 + x$.
LösungGanz wichtig: Erschaffe keine Haiguine. Das heißt, Du darfst Terme nur dann zusammenfassen, wenn sie gleichartig sind.
Das bedeutet, dass nur die folgenden Terme zusammengefasst werden dürfen:
- $3x-4x=(3-4)x=-1x=-x$: Du siehst, hier werden die Koeffizienten $3$ und $4$ subtrahiert.
- So kann auch $3y-4y$ zusammengefasst werden zu $-y$.
- Du kannst auch Zahlen ohne Variablen zusammenfassen: $3-4=-1$
Übrigens: $2x$ ist eine Schreibweise für $2\cdot x$. Das Malzeichen zwischen Koeffizienten (hier die $2$) und der Variablen (hier $x$) wird oft weggelassen. Man hat sich darauf geeinigt, dass das Hintereinanderschreiben von einer Zahl und einer Variablen als Multiplikation gewertet wird.
-
Beschreibe, wann du Terme zusammenfassen kannst.
TippsDie folgenden Terme kannst du nicht zusammenfassen (also addieren oder subtrahieren):
- $2x$ und $3y$,
- $2$ und $3y$ sowie
- $3y$ und $5$.
Diese Terme kannst du zusammenfassen:
- $2x+3x=5x$,
- $2-3=-1$ sowie
- $3y+5y=8y$.
Merke dir: Fasse niemals Terme zusammen, die verschiedenartig sind.
Unter „Zusammenfassen“ versteht man hier Addieren oder Subtrahieren.
LösungMerke dir: Fasse niemals Terme zusammen, die verschiedenartig sind.
Mache nicht den gleichen Fehler wie Dr. Evil und versuche, Haiguine zu erschaffen.
Für die Mathematik bedeutet das, dass du nur Terme zusammenfassen darfst, die gleichartig sind.
Das heißt: Du darfst Terme nur dann addieren oder subtrahieren, wenn sie gleichartig sind.
Du darfst beispielsweise $4x + 7x$ zu $11x$ zusammenfassen.
Der Term $3a + 2b$ lässt sich jedoch nicht weiter zusammenfassen.
Zusatz: Du darfst Terme, die verschiedenartig sind, durchaus multiplizieren.
$2x\cdot 3y=6xy$
-
Untersuche die folgenden Terme.
TippsBeachte: Fasse nur gleichartige Terme zusammen.
Zwei Terme werden dabei als gleichartig betrachtet, wenn sie dieselbe(n) Variable(n) enthalten.
Wichtig ist dabei auch der Exponent der Variablen. Beispielsweise sind die Terme $4x$ und $3x^2$ nicht gleichartig.
Hier siehst du zwei Beispiele für das Distributivgesetz:
- $3(2x-y)=3\cdot 2x-3y=6x-3y$ und
- $(x+y)\cdot(-2)=-2x-2y$.
Wenn du Terme zusammenfasst, addierst oder subtrahierst du die Koeffizienten. Schaue dir hierfür ein Beispiel an:
$7x+3x-8x=(7+3-8)x=2x$.
Die Terme müssen dafür gleichartig sein, also dieselbe(n) Variable(n) beinhalten.
LösungDa haben sich die beiden Wissenschaftler ganz schön schwere Aufgaben einfallen lassen.
Dr. Evil's Term: $3(x-6)+4x-4(x+y)+8y+12$
- Er wendet das Distributivgesetz an:
- Nun sortiert er die Terme so, dass gleiche Terme hintereinander stehen: $3x+4x-4x-4y+8y-18+12$.
- So kann er die Terme leichter zusammenfassen zu $3x-4y-6$.
- Auch er wendet zunächst das Distributivgesetz an: $12x-3x+3y+8+2y+4\cdot 2x+4\cdot 3y-5=12x-3x+3y+8+2y+8x+12y-5$.
- Nun ordnet er die Terme so an, dass gleiche Terme hintereinander stehen: $12x-3x+8x+3y+2y+12y+8-5$.
- Zuletzt kann er die Terme zusammenfassen zu $17x+17y+3$.
9.114
sofaheld-Level
6.601
vorgefertigte
Vokabeln
8.042
Lernvideos
37.149
Übungen
33.477
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Halbschriftliche Division – Übungen