Teilen – Umkehraufgaben
Lerne, wie Umkehraufgaben in Mathe funktionieren, indem du zum Beispiel herausfindest, wie viele Kekse jedes Kind erhält, wenn $24$ Kekse auf acht Kinder aufgeteilt werden müssen. Interessiert? Das und mehr wirst du im folgenden Text erfahren.
- Umkehraufgaben der Division
- Was sind Umkehraufgaben?
- Welche Umkehraufgaben der Division gibt es?
- Wie kann man Umkehraufgaben der Division berechnen?

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Die Grundrechenarten

Malnehmen – wie geht das?

Malnehmen bis 50 (Plättchen)

Teilen – wie geht das?

Teilen – wie löse ich Divisionsaufgaben?

Rechengeschichten

Gerade und ungerade Zahlen

Malnehmen – Was muss ich beachten?

Malnehmen – Malaufgaben zerlegen

Malnehmen – Zahlen vertauschen

Malnehmen – Umkehraufgaben

Teilen – erste Schritte

Teilen durch 10er-Zahlen

Teilen – Umkehraufgaben

Wie teilt man Gegenstände auf?
Teilen – Umkehraufgaben Übung
-
Wie lautet die Lösung der Aufgabe $\square$ : 4 = 3 ? Rechne.
TippsUm die Lücke berechnen zu können, musst du die Umkehraufgabe von dieser Aufgabe rechnen.
Ein Beispiel dazu wäre:
$\square$ : 2 = 8.
Die Umkehraufgabe davon ist dann folgende:
2 $\cdot$ 8 = 16.
Die fehlende Zahl ist die 16.
LösungUm die gesuchte Zahl zu finden, rechnest du hier die Umkehraufgabe. Da die gesuchte Zahl an der ersten Stelle steht, ist die Umkehraufgabe zu der Geteiltaufgabe eine Malaufgabe.
Aus der Geteiltaufgabe: $\square$ : 3 = 4 wird also die Malaufgabe: 4 $\cdot$ 3 = $\square$.
4 $\cdot$ 3 = 12.
Du kannst das Ergebnis noch mit der Probe überprüfen. Dafür setzt du das Ergebnis 12 in die erste Aufgabe ein:
12 : 3 = 4. Also ist das Ergebnis richtig.
-
Wie lautet die richtige Reihenfolge der Rechenschritte? Überlege.
TippsDie Umkehraufgabe bei dieser Aufgabe ist eine Geteiltaufgabe, da die gegebene Rechnung eine Malaufgabe ist.
Ein Beispiel dazu wäre:
$\square$ $\cdot$ 2 = 4.
Umkehraufgabe: 4 : 2 = 2
Proberechnung: 2 $\cdot$ 2 =4
LösungUm eine Platzhalteraufgabe rechnen zu können, musst du die Umkehraufgaben bilden.
Da $\square$ $\cdot$ 4 = 8 eine Malaufgabe ist, ist die Umkehraufgabe eine Geteiltaufgabe.
Also wird die Malaufgabe: $\square$ $\cdot$ 4 = 8 zu der Geteiltaufgabe 8 : 4 = $\square$.
Das Ergebnis ist 2.
Nun kannst du noch die Probe machen und das Ergebnis für den Platzhalter einsetzen. Also rechnest du:
2 $\cdot$ 4 = 8. Also ist das Ergebnis richtig, super.
-
Welche Rechnung gehört zu welcher Umkehraufgabe? Ordne zu.
TippsBei den Umkehraufgaben musst du darauf achten, wo der Platzhalter steht.
- Wenn er an der ersten Stelle steht, dann ist die Umkehraufgabe der Rückweg. Aus einer Malaufgabe wird also eine Geteiltaufgabe und umgekehrt.
- Wenn er an der zweiten Stelle steht, dann musst du bei einer gegebenen Geteiltaufgabe auch bei der Umkehraufgaben teilen.
Ein Beispiel:
- Platzhalter an der ersten Stelle: $\square$ : 5 = 3 $~\rightarrow~$ 3 $\cdot$ 5 = 15
- Platzhalter an der zweiten Stelle: 18 : $\square$ = 2 $~\rightarrow~$ 18 : 2 = 9
LösungWenn bei einer Geteiltaufgabe der Platzhalter an der zweiten Stelle steht, dann ist die Umkehraufgabe auch eine Geteiltaufgabe. Steht der Platzhalter an der ersten Stelle der Aufgabe, dann ist die Umkehraufgabe eine Malaufgabe.
Aus der Geteiltaufgabe: $\square$ : 2 = 5 wird eine Malaufgabe, da der Platzhalter an der ersten Stelle steht.
Die Umkehraufgabe lautet: 5 $\cdot$ 2 = $\square$. Das Ergebnis ist 10.
$~$
Aus der Geteiltaufgabe: 12 : $\square$ = 3 wird also eine Geteiltaufgabe, da der Platzhalter an der zweiten Stelle steht.
Die Umkehraufgabe lautet: 12 : 3 = $\square$. Das Ergebnis ist 4.
-
Welche Zahl fehlt, damit die Rechnung richtig ist? Notiere.
TippsPlatzhalteraufgaben bei Geteiltaufgaben:
- Der Platzhalter ist an der ersten Stelle, dann ist die Umkehraufgabe eine Malaufgabe.
- Der Platzhalter ist an der zweiten Stelle, dann musst du bei der Umkehraufgabe auch geteilt rechnen.
Hier sind zwei Beispiele für Umkehraufgaben:
- 4 : $\square$ = 2. Du musst in der Umkehraufgabe teilen, da der Platzhalter an der zweiten Stelle steht, also 4 : 2 = ?
- $\square$ : 2 = 2. Du musst in der Umkehraufgabe mal nehmen, da der Platzhalter an der ersten Stelle steht, also 2 $\cdot$ 2 = ?
LösungZunächst musst du die Umkehraufgabe zu den gegebenen Aufgaben finden:
- Steht der Platzhalter an der ersten Stelle, dann ist die Umkehraufgabe eine Malaufgabe.
- Ist die erste Zahl allerdings gegeben und die zweite Zahl wird gesucht, dann ist die Umkehraufgabe eine Geteiltaufgabe.
18 : $\square$ = 6 $~~$ Die Lücke steht an der zweiten Stelle, also ist die Umkehraufgabe eine Geteiltaufgabe. Diese lautet:
18 : 6 = $\square$. Die Lösung dieser Aufgabe ist 3. Also ist 3 die gesuchte Zahl.
Mit der Probe kannst du das Ergebnis überprüfen, dazu setzt du die 3 in die Lücke der ersten Aufgabe ein:
18 : 3 = 6
Die Lücke kann aber auch an der ersten Stelle stehen. Schauen wir uns dazu auch ein Beispiel an: $~$ $\square$ : 3 = 4
Hier ist die Umkehraufgabe eine Malaufgabe. Diese lautet: $~$ 4 $\cdot$ 3 = $\square$
Das Ergebnis ist hier 12. Setzt du die 12 in die Aufgabe ein, erhältst du:
12 : 3 = 4.
-
Für welche Zahl steht der Platzhalter in der Geteiltaufgabe? Gib die Lösung an.
TippsUm diese Aufgabe rechnen zu können, musst du eine Umkehraufgabe bilden. Der Platzhalter steht an der ersten Stelle der Aufgabe. Also ist die Umkehraufgabe zur Geteiltaufgabe eine Malaufgabe.
Die Umkehraufgabe kann hier mit der Multiplikation gebildet werden: Ein Beispiel dazu wäre:
$\square$ : 2 = 2.
Umkehraufgabe: 2 $\cdot$ 2 = 4
Die Zahl 4 fehlt in dieser Beispielrechnung.
LösungHier musst du wieder die Umkehraufgabe bilden, um das Ergebnis herauszufinden. Da der Platzhalter an der ersten Stelle der Geteiltaufgabe steht, ist die Umkehraufgabe eine Malaufgabe.
Aus das Aufgabe: $\square$ : 2 = 5 wird also die Malaufgabe 2 $\cdot$ 5 = $\square$.
Das Ergebnis ist 10.
Du kannst das Ergebnis noch überprüfen, indem du die 10 für den Platzhalter einsetzt. Das ergibt also: 10 : 2 = 5.
Da diese Rechnung richtig ist, ist das Ergebnis für den Platzhalter richtig. -
Wie viele Gummibärchen hat Nico jeden Tag? Rechne.
TippsDie Umkehraufgabe, die zu dieser Rechnung passt, ist eine Division. Deswegen ist der Platzhalter in allen diesen Aufgaben an der zweiten Stelle.
Beispiel:
4 : $\square$ = 1
Umkehraufgabe: 4:1= 4
LösungWieder benötigst du zur Lösung die Umkehraufgaben. Die Umkehraufgabe ist hier eine Geteiltaufgabe, da immer die zweite Zahl in den Geteiltaufgaben gesucht ist.
Lass uns hierzu ein Beispiel aus der Aufgabenstellung ansehen:
Nico hat 20 Gummibärchen, die ihm für 4 Tage reichen. Die Rechnung zu dieser Aufgabe lautet also:
20 : $\square$ = 4.
Die Umkehraufgabe lautet:
20 : 4 = $\square$. Das Ergebnis ist 5.
Damit hat Nico für jeden Tag 5 Gummibärchen.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.220
Lernvideos
38.700
Übungen
33.508
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt