30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Malnehmen – Umkehraufgaben 04:28 min

Textversion des Videos

Transkript Malnehmen – Umkehraufgaben

Hallo!

Schau mal, wen Lilli und Niko uns mitgebracht haben. Es sind diese zwei Pfeile, die hier hereingedüst kommen.

Das sind die Umkehrpfeile, die uns heute bei ein paar Umkehraufgaben helfen werden. Wir wollen uns nämlich Mal- und Geteilt-Aufgaben ansehen.

Niko verpasst dem ersten Pfeil schon mal ein Malzeichen. Kannst du dir denken, welches Zeichen der andere Pfeil bekommen muss, damit er ein Umkehrpfeil wird? Um das herauszufinden, musst du wissen, was Teilen ist. Das ist nämlich der Rückweg fürs Malnehmen. Ich zeige dir kurz, warum das so ist: Ich kann diese Männchen-Kette in der Mitte teilen, damit jeder von uns beiden die gleiche Anzahl an Männchen bekommt. 12 Männchen verteilt an 2 Personen, das macht 6 Männchen für jeden. Umgekehrt gilt:

Wenn jeder von uns eine Kette mit 6 Männchen bastelt, können wir zusammen eine Kette entstehen lassen, die doppelt so lang ist, also 12 Männchen enthält. Denn 2 mal 6 = 12. Dann haben wir wieder die lange Kette. Du siehst: Malnehmen und teilen sind auch Hin- und Rückweg, also Umkehraufgaben. Jetzt wissen wir auch, welches Zeichen der zweite Pfeil bekommt: Er bekommt das Geteilt-Zeichen. Damit sind unsere beiden Pfeile startklar. Dann sind auch wir bereit für ein Beispiel: Wir nehmen die einfache Aufgabe 2x3.

Der Normalfall ist, dass die Zahl hinter dem ist gleich-Zeichen fehlt. Dann rechnen wir einfach aus. 2x3 ist gleich 6. Du kannst auch sagen 2x3 ist 3+3. Und das ist 6. Jetzt gibt es aber auch den Fall: 2x wie viel ist gleich 6? In diesem einfachen Beispiel können wir das Ergebnis schon fast ohne Rechnen sagen. Aber bei größeren Zahlen brauchen wir die Umkehraufgabe, um das rechnen zu können. Also Rückwärtspfeil: aus „mal“ wird „geteilt“ 6:2 = 3. Wir verteilen zum Beispiel die 6 Männchen an zwei Personen. Dann bekommt jeder 3. Ins Kästchen gehört also die 3. Zur Probe rechnen wir 2x3= 6. Und das ist richtig. Prima. Geschafft. Machen wir noch ein anderes Beispiel: Wie viel mal 4 = 8? Unsere Pfeilfreunde zeigen uns den Weg: Wir rechnen 8 : 4 = 2 Und die Probe: 2 x 4 = 8. Das stimmt.

Auf diese Weise können wir Kästchenaufgaben auch bei Malaufgaben rechnen. Dann ist die Umkehraufgabe eine Geteiltaufgabe. Merke dir also: Bei Plus ist die Umkehraufgabe eine Minusaufgabe. Beim Malnehmen müssen wir auf dem Rückweg teilen. Das gilt übrigens auch, wenn wir von einer Geteiltaufgabe ausgehen. Dann ist die Umkehraufgabe eine Malaufgabe.

Lilli und Niko machen sich jetzt mit den beiden Pfeilen auf den Weg und wollen mit ihnen zusammen noch ein paar Umkehraufgaben rechnen. Tschüss!

11 Kommentare
  1. Alicia ohne rahmen

    Hallo Carolin Sube85,
    vielen Dank für deinen netten Kommentar.
    Ich habe mir die Aufgabe 5 gerade hier in der Redaktion angehört. Bei uns funktioniert sie einwandfrei. Am besten überprüfst du mal deine Toneinstellungen oder deinen Kopfhörer.
    Viele Grüße aus der Redaktion

    Von Alicia v. L.C., vor 6 Tagen
  2. Default

    hallo,ich wollte euch nur sagen das bei der 5. Aufgabe man meistens die erste Zahl errätzeln musste weil sie nicht ganz mit augenommen wurde. Ich mag eure Videos und sie helfen mir auch in der Schule bessere Noten zu bekommen.Danke

    Von Carolin Sube85, vor 6 Tagen
  3. Default

    Ich habe alles richtig. Und noch mal danke. Macht weiter so

    Von Chimercy2005, vor 7 Monaten
  4. Default

    Ok

    Von Anette 10, vor 11 Monaten
  5. Default

    Wo ist lilis mund . Bei aufgabe 4

    Von Medine B., vor etwa einem Jahr
  1. Default

    gg alles richtig!!!

    Von Niccl, vor mehr als einem Jahr
  2. Default

    Also von den Aufgaben......

    Von Smakulla, vor mehr als 2 Jahren
  3. Default

    Ich hatte alles Richtig!!!!!!!!!!!!!
    LG

    Von Smakulla, vor mehr als 2 Jahren
  4. Default

    ja es macht sehr viel Spaß !

    Von Alaya S., vor mehr als 2 Jahren
  5. Nathalie

    Hallo Noah,
    vielen Dank für deinen netten Kommentar. Wir freuen uns sehr, dass dir das Video gefällt und du Spaß beim Anschauen der Videos hast. Wir wünschen dir weiterhin viel Freude beim Dazulernen.
    Liebe Grüße aus der Redaktion
    Nathalie

    Von Nathalie Zietz, vor mehr als 2 Jahren
  6. Default

    Das ist ganz toll was ihr da macht es macht mir spaß :Noah

    Von Roman Panse, vor mehr als 2 Jahren
Mehr Kommentare

Malnehmen – Umkehraufgaben Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Malnehmen – Umkehraufgaben kannst du es wiederholen und üben.

  • Wie lautet die Umkehraufgabe zu folgender Malaufgabe? Überlege.

    Tipps

    Beipspiel: $~~$ 4 + $\square$ = 7

    Die Umkehraufgabe lautet: $~$ 7 - 4 = 3.

    Die Umkehraufgabe zu einer Plusaufgabe ist also eine Minusaufgabe.

    Beipspiel: $~~$ 3 $\cdot$ $\square$ = 12

    Die Umkehraufgabe lautet: $~$ 12 : 3 = 4.

    Die Umkehraufgabe zu einer Malaufgabe ist also eine Geteiltaufgabe.

    Lösung

    Um die Umkehraufgabe zu einer Malaufgabe richtig schreiben zu können, musst du wissen, welches Rechenzeichen du brauchst. Und das ist bei einer Malaufgabe das Geteiltzeichen.

    2 $\cdot$ $\square$ = 6

    Die Umkehraufgabe lautet: $~$ 6 : 2 = $\square$. Das Ergebnis ist 3.

    Also ist die 3 die gesuchte Zahl. Du kannst auch noch die Probe machen und die 3 in die erste Aufgabe einsetzten: 2 $\cdot$ 3 = 6.

  • Was ist die Umkehraufgabe zu einer Malaufgabe? Überlege.

    Tipps

    Die Umkehraufgabe ist der Rückweg einer Rechnung, demzufolge gehören immer zwei Rechenzeichen zusammen.

    Plus gehört zu Minus, Mal gehört zu Geteilt. Du kannst es auch umgedreht sehen: Wenn du eine Geteiltaufgabe hast, dann ist das Rechenzeichen der Umkehraufgabe ein Malzeichen.

    Lösung

    Die Umkehraufgabe zu einer Malaufgabe ist die Geteiltaufgabe.

    Schauen wir uns das an einem Beispiel an:

    6 $\cdot$ 2 = 12 .

    Die Umkehraufgabe lautet: 12 : 6 = 2 oder 12 : 2 = 6.

    Also wird aus einer Malaufgabe immer eine Geteiltaufgabe.

  • Wie lautet die Umkehraufgabe zu den gegebenen Aufgaben? Ordne zu.

    Tipps

    Die Umkehraufgabe zu einer Geteiltaufgabe ist eine Malaufgabe. Das gilt auch umgekehrt.

    Höre dir die Audiodateien mehrmals an oder mach dir Notizen.

    Um die Umkehraufgabe zu finden, musst du rückwärts rechnen. Du gehst also vom Ergebnis aus. Außerdem musst du das Rechenzeichen ändern.

    Die Umkehraufgabe lautet: 2 $\cdot$ 6 = 12.

    Lösung

    Die Umkehraufgabe zu einer Geteiltaufgabe ist:

    • auch eine Geteiltaufgabe, wenn die zweite Zahl in der Rechnung gesucht wird.
    • eine Malaufgabe, wenn die erste Zahl in der Rechnung gesucht wird.
    In der Aufgabe 12 : $\square$ = 6 ist die zweite Zahl der Rechnung gesucht. Also ist die Umkehraufgabe eine Geteiltaufgabe. Diese lautet:

    12 : 6 = $\square$. Das Ergebnis ist 2.

    Ist jedoch die erste Zahl der Rechnung gesucht, dann ist die Umkehraufgabe eine Malaufgabe. Zum Beispiel bei der Aufgabe:

    $\square$ : 2 = 6.

    Die Umkehraufgabe laute: 2 $\cdot$ 6 = $\square$. Das Ergebnis ist 12.

    12 : 2 = 6

  • Wie lautet die Umkehraufgabe zur Malaufgabe $\square$ $\cdot$ 4 = 8? Überlege.

    Tipps

    Die Umkehraufgabe zu einer Malaufgabe ist eine Geteiltaufgabe.

    Beispiel: $~~$ 4 $\cdot$ $\square$ = 20

    Die Umkehraufgabe lautet: $~$ 20 : 4 = 5.

    Denk daran, dass keine zwei Rechenoperationen direkt hintereinanderstehen dürfen.

    Lösung

    Die Umkehraufgabe zur Malaufgabe $\square$ $\cdot$ 4 = 8 ist eine Geteiltaufgabe. Diese lautet:

    8 : 4 = 2.

  • Welche Aufgabe passt zu welcher Umkehraufgabe? Entscheide.

    Tipps

    Um die Zahl zu finden, die in die Lücke gehört, solltest du die Umkehraufgabe aufstellen.

    Die Umkehraufgabe zu einer Malaufgabe ist eine Geteiltaufgabe.

    Beipspiel: $~~$ 6 $\cdot$ $\square$ = 18

    Die Umkehraufgabe lautet: $~$ 18 : 6 = 3.

    Also ist die 3 die gesuchte Zahl. Mit der Probe kannst du dein Ergebnis überprüfen:

    6 $\cdot$ 3 = 18 .

    Lösung

    Um die Zahl zu finden, die in die Lücke gehört, solltest du die Umkehraufgabe aufstellen. Die Umkehraufgabe zu einer Malaufgabe ist eine Geteiltaufgabe.

    Ein Beispiel: $~~$ 4 $\cdot$ $\square$ = 24
    Die Umkehraufgabe lautet: $~$ 24 : 4 = $\square$

    Das Ergebnis ist 6. Die Probe zeigt dir, ob das Ergebnis richtig ist:
    4 $\cdot$ 6 = 24 .

    $~$

    Schauen wir uns noch ein Beispiel an: 24 $\cdot$ $\square$ = 48 .

    Die Umkehraufgabe lautet: $~$ 48 : 24 = $\square$.

    Das Ergebnis ist 2. Die Probe zeigt dir wieder, dass das Ergebnis richtig ist:

    24 $\cdot$ 2 = 48 .

  • Welche Zahl fehlt in der Malaufgabe? Rechne aus.

    Tipps

    Vielleicht hilft dir die Umkehraufgabe dabei, die Lösung zu finden. Aus einer Malaufgabe wird dabei eine Geteiltaufgabe.

    Hier ein Beispiel: $~$ $\square~\cdot$ 5 = 15

    Die Umkehraufgabe lautet dann: 15 : 5 = $\square$ .

    Das Ergebnis ist natürlich 3. Du kannst auch noch die Probe machen, indem du das Ergebnis in die Malaufgabe einsetzt:

    3 $\cdot$ 5 = 15 .

    Lösung

    Damit du die fehlende Zahl ausrechnen kannst, musst du hier die Umkehraufgabe bilden. Die Umkehraufgabe ist bei einer Malaufgabe immer eine Geteiltaufgabe.

    Gegeben ist die Malaufgabe: $\square$ $\cdot$ 5 = 10 .

    Die Umkehraufgabe zu dieser Aufgabe ist eine Geteiltaufgabe, diese lautet: 10 : 5 = $\square$.

    Das Ergebnis ist 2. Die 2 ist also die fehlende Zahl in der Lücke.