Parallele und orthogonale/senkrechte Geraden – Definition
Orthogonale Geraden stehen im rechten Winkel zueinander, während parallele Geraden sich nicht schneiden. Bei orthogonalen Geraden ist der Abstand zueinander an jedem Punkt unterschiedlich, bei parallelen Geraden ist der Abstand hingegen an jedem Punkt gleich. Lerne mehr über die Orthogonalität im folgenden Artikel!
- Orthogonale und parallele Geraden – Definition
- Orthogonale Geraden – Konstruktion
- Parallele Geraden – Konstruktion
- Orthogonale und parallele Geraden – Beispiele
- Ausblick – das lernst du nach Parallele und orthogonale/senkrechte Geraden – Definition
- Weiterführende Inhalte zum Thema orthogonale und parallele Geraden
- Häufig gestellte Fragen zum Thema orthogonale und parallele Geraden

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Geometrische Grundbegriffe – Überblick

Geraden, Strecken und rechte Winkel

Parallele und orthogonale/senkrechte Geraden – Definition

Geometrische Lagebezeichnungen – waagerecht, senkrecht, horizontal und vertikal

Horizontale und vertikale Geraden im Koordinatensystem

Lagebeziehungen zweier Geraden

Was ist ein Abstand?
Parallele und orthogonale/senkrechte Geraden – Definition Übung
-
Gib an, welche Geraden parallel sind.
TippsZwei Geraden sind parallel, wenn sie überall den gleichen Abstand zueinander haben.
Wenn zwei Geraden sich schneiden, kannst du sicher sein, dass sie nicht parallel sind.
LösungZwei Geraden sind parallel, wenn sie überall den gleichen Abstand zueinander haben. Demnach stellen das erste und dritte Bild jeweils zwei zueinander parallele Geraden dar.
Den Abstand zweier paralleler Geraden misst du, indem du ein Lot zwischen diesen konstruierst und die Länge von diesem misst.
Wenn zwei Geraden sich schneiden, kannst du sicher sein, dass sie nicht parallel sind.
-
Beschreibe die verschiedenen Typen von Geraden.
TippsHaben zwei Geraden überall den gleichen Abstand zueinander, dann können sie sich nicht schneiden.
Haben zwei Geraden nicht überall den gleichen Abstand zueinander, dann müssen sie sich irgendwo schneiden.
LösungSo kannst du den Lückentext vervollständigen:
„Eine Gerade ist unendlich lang. Sie hat keinen Anfangs- und Endpunkt.
Ein Strahl ist unendlich lang. Er hat einen Anfangs-, aber keinen Endpunkt.
Eine Strecke ist endlich lang. Sie hat Anfangs- und Endpunkt.“
- Diese Eigenschaften von geraden Linien musst du dir merken.
$g \parallel h$“
- Haben zwei Geraden überall den gleichen Abstand zueinander, dann können sie sich nicht schneiden.
$g \nparallel h$.“
- Haben zwei Gerade nicht überall den gleichen Abstand zueinander, dann müssen sie sich irgendwo schneiden.
$g \perp h$.“
-
Bestimme die korrekten Aussagen zu parallelen und senkrechten Geraden.
TippsEinen Strahl nennt man auch Halbgerade.
Geraden sind unendlich lang.
LösungDiese Aussagen sind falsch:
„Ein Strahl hat einen Anfangs- und Endpunkt.“
- Einen Strahl nennt man auch Halbgerade. Er hat einen Anfangspunkt, aber keinen Endpunkt.
- Zwei senkrecht zueinander stehende Geraden schneiden sich in einem rechten Winkel. Dieser beträgt $90^{\circ}$.
„Eine Gerade hat keinen Anfangs- oder Endpunkt.“
- Geraden sind unendlich lang. Sie haben weder Anfangs- noch Endpunkt und kommen aus dem Unendlichen und verschwinden dort.
- Zwei parallele Geraden haben an jeder Stelle den gleichen Abstand zueinander. Sie können sich also nie schneiden. Dieser Abstand darf allerdings nicht null sein. Sonst wären die Geraden identisch.
- Haben zwei Geraden nicht überall den gleichen Abstand, müssen sie sich irgendwann schneiden.
-
Ermittle die Lagebeziehungen der Geraden.
TippsWenn zwei Geraden sich schneiden, kannst du sicher sein, dass sie nicht parallel sind.
Schneiden sich zwei Geraden im rechten Winkel, sind sie senkrecht zueinander.
LösungDen Abstand einer Geraden von einer anderen misst du, indem du die senkrechte Strecke misst, nach der du auf die andere Gerade auftriffst.
Wenn zwei Geraden sich schneiden, kannst du sicher sein, dass sie nicht parallel sind.
Schneiden sich zwei Geraden im rechten Winkel, sind sie senkrecht zueinander.
So erhalten wir für die erste Zeichnung:
$g\parallel h$,
$g \nparallel i$,
$h \nparallel i$ und
$i \perp j$.
Und für die zweite Zeichnung:
$d \nparallel b$,
$c \parallel d$,
$c \nparallel a$ und
$a \perp b$.
-
Beschreibe die Lage der abgebildeten Geraden zueinander.
TippsZwei parallele Geraden haben überall den gleichen Abstand.
Diese Geraden stehen senkrecht zueinander.
LösungSo kannst du die Werte zuordnen:
- Zwei parallele Geraden haben überall den gleichen Abstand. Man beschreibt sie mit diesem Zeichen: $\parallel$.
- Zwei sich schneidende Geraden haben nicht überall den gleichen Abstand. Man beschreibt sie mit diesem Zeichen: $\nparallel$.
- Zwei senkrechte Geraden schneiden sich in einem Winkel von $90^{\circ}$.
-
Ermittle die Abstände der geometrischen Figuren von der Geraden.
TippsIn der Geometrie ist der Abstand definiert als die kürzeste Verbindung zweier geometrischer Objekte. Der Abstand von einer Geraden muss immer im rechten Winkel von dieser Geraden abgehen.
Da der Abstand die kürzeste Verbindung ist, beträgt dieser $0$, wenn sich die Geraden schneiden.
LösungIn der Geometrie ist der Abstand definiert als die kürzeste Verbindung zweier geometrischer Objekte. Der Abstand von einer Geraden muss immer im rechten Winkel von dieser Geraden abgehen. Da der Abstand die kürzeste Verbindung ist, beträgt dieser $0$, wenn sich die Geraden schneiden. Deshalb gilt:
- Die sich schneidenden Geraden $g$ und $i$ haben einen Abstand von $0~\text{cm}$.
- Die parallelen Geraden $g$ und $h$ haben einen Abstand von $1~\text{cm}$.
- Die Gerade $g$ hat einen Abstand von $2~\text{cm}$ vom Punkt $P$.
9.114
sofaheld-Level
6.601
vorgefertigte
Vokabeln
8.057
Lernvideos
37.282
Übungen
33.615
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren