Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Parallele und orthogonale/senkrechte Geraden – Definition

Orthogonale Geraden stehen im rechten Winkel zueinander, während parallele Geraden sich nicht schneiden. Bei orthogonalen Geraden ist der Abstand zueinander an jedem Punkt unterschiedlich, bei parallelen Geraden ist der Abstand hingegen an jedem Punkt gleich. Lerne mehr über die Orthogonalität im folgenden Artikel!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.3 / 618 Bewertungen
Die Autor*innen
Avatar
Team Digital
Parallele und orthogonale/senkrechte Geraden – Definition
lernst du in der 5. Klasse - 6. Klasse

Parallele und orthogonale/senkrechte Geraden – Definition Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Parallele und orthogonale/senkrechte Geraden – Definition kannst du es wiederholen und üben.
  • Bestimme die korrekten Aussagen zu parallelen und senkrechten Geraden.

    Tipps

    Einen Strahl nennt man auch Halbgerade.

    Geraden sind unendlich lang.

    Lösung

    Diese Aussagen sind falsch:

    „Ein Strahl hat einen Anfangs- und Endpunkt.“

    • Einen Strahl nennt man auch Halbgerade. Er hat einen Anfangspunkt, aber keinen Endpunkt.
    „Stehen zwei Geraden senkrecht zueinander, dann schneiden sie sich in einem Winkel von $180^{\circ}$.“

    • Zwei senkrecht zueinander stehende Geraden schneiden sich in einem rechten Winkel. Dieser beträgt $90^{\circ}$.
    Diese Aussagen sind korrekt:

    „Eine Gerade hat keinen Anfangs- oder Endpunkt.“

    • Geraden sind unendlich lang. Sie haben weder Anfangs- noch Endpunkt und kommen aus dem Unendlichen und verschwinden dort.
    „Parallele Geraden schneiden sich nie.“

    • Zwei parallele Geraden haben an jeder Stelle den gleichen Abstand zueinander. Sie können sich also nie schneiden. Dieser Abstand darf allerdings nicht null sein. Sonst wären die Geraden identisch.
    „Bei nicht parallelen Geraden ist der Abstand zwischen den beiden Geraden nicht konstant.“

    • Haben zwei Geraden nicht überall den gleichen Abstand, müssen sie sich irgendwann schneiden.
  • Beschreibe die verschiedenen Typen von Geraden.

    Tipps

    Haben zwei Geraden überall den gleichen Abstand zueinander, dann können sie sich nicht schneiden.

    Haben zwei Geraden nicht überall den gleichen Abstand zueinander, dann müssen sie sich irgendwo schneiden.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Eine Gerade ist unendlich lang. Sie hat keinen Anfangs- und Endpunkt.

    Ein Strahl ist unendlich lang. Er hat einen Anfangs-, aber keinen Endpunkt.

    Eine Strecke ist endlich lang. Sie hat Anfangs- und Endpunkt.“

    • Diese Eigenschaften von geraden Linien musst du dir merken.
    „Zwei Geraden sind parallel, wenn sie an jeder Stelle den gleichen Abstand zueinander haben. Sie schneiden sich nie.

    $g \parallel h$“

    • Haben zwei Geraden überall den gleichen Abstand zueinander, dann können sie sich nicht schneiden.
    „Zwei Geraden schneiden sich, wenn sie nicht an jeder Stelle den gleichen Abstand zueinander haben. Sie sind dann nicht parallel. Man schreibt:

    $g \nparallel h$.“

    • Haben zwei Gerade nicht überall den gleichen Abstand zueinander, dann müssen sie sich irgendwo schneiden.
    „Zwei Geraden sind senkrecht zueinander, wenn sie sich in einem Winkel von $90^{\circ}$ schneiden. Man schreibt:

    $g \perp h$.“

  • Erschließe, welche Geraden parallel sind.

    Tipps

    Zwei Geraden sind parallel, wenn sie überall den gleichen Abstand zueinander haben.

    Wenn zwei Geraden sich schneiden, kannst du sicher sein, dass sie nicht parallel sind.

    Lösung

    Zwei Geraden sind parallel, wenn sie überall den gleichen Abstand zueinander haben. Demnach stellen das erste und dritte Bild jeweils zwei zueinander parallele Geraden dar.

    Den Abstand zweier paralleler Geraden misst du, indem du ein Lot zwischen diesen konstruierst und die Länge von diesem misst.

    Wenn zwei Geraden sich schneiden, kannst du sicher sein, dass sie nicht parallel sind.

  • Ermittle die Lagebeziehungen der Geraden.

    Tipps

    Wenn zwei Geraden sich schneiden, kannst du sicher sein, dass sie nicht parallel sind.

    Schneiden sich zwei Geraden im rechten Winkel, sind sie senkrecht zueinander.

    Lösung

    Den Abstand einer Geraden von einer anderen misst du, indem du die senkrechte Strecke misst, nach der du auf die andere Gerade auftriffst.

    Wenn zwei Geraden sich schneiden, kannst du sicher sein, dass sie nicht parallel sind.

    Schneiden sich zwei Geraden im rechten Winkel, sind sie senkrecht zueinander.

    So erhalten wir für die erste Zeichnung:

    $g\parallel h$,

    $g \nparallel i$,

    $h \nparallel i$ und

    $i \perp j$.

    Und für die zweite Zeichnung:

    $d \nparallel b$,

    $c \parallel d$,

    $c \nparallel a$ und

    $a \perp b$.

  • Beschreibe die Lage der abgebildeten Geraden zueinander.

    Tipps

    Zwei parallele Geraden haben überall den gleichen Abstand.

    Diese Geraden stehen senkrecht zueinander.

    Lösung

    So kannst du die Werte zuordnen:

    • Zwei parallele Geraden haben überall den gleichen Abstand. Man beschreibt sie mit diesem Zeichen: $\parallel$.
    • Zwei sich schneidende Geraden haben nicht überall den gleichen Abstand. Man beschreibt sie mit diesem Zeichen: $\nparallel$.
    • Zwei senkrechte Geraden schneiden sich in einem Winkel von $90^{\circ}$.
  • Ermittle die Abstände der geometrischen Figuren von der Geraden.

    Tipps

    In der Geometrie ist der Abstand definiert als die kürzeste Verbindung zweier geometrischer Objekte. Der Abstand von einer Geraden muss immer im rechten Winkel von dieser Geraden abgehen.

    Da der Abstand die kürzeste Verbindung ist, beträgt dieser $0$, wenn sich die Geraden schneiden.

    Lösung

    In der Geometrie ist der Abstand definiert als die kürzeste Verbindung zweier geometrischer Objekte. Der Abstand von einer Geraden muss immer im rechten Winkel von dieser Geraden abgehen. Da der Abstand die kürzeste Verbindung ist, beträgt dieser $0$, wenn sich die Geraden schneiden. Deshalb gilt:

    • Die sich schneidenden Geraden $g$ und $i$ haben einen Abstand von $0~\text{cm}$.
    Bei den parallelen Geraden $g$ und $h$ kannst du eine Linie ziehen, die senkrecht zu beiden Geraden ist, und anschließend die Entfernung der Schnittpunkte bestimmen. So erhältst du:

    • Die parallelen Geraden $g$ und $h$ haben einen Abstand von $1~\text{cm}$.
    Bei Gerade $g$ und Punkt $P$ kannst du ähnlich vorgehen. Hier ziehst du eine Gerade, die senkrecht zur Geraden ist und durch den Punkt verläuft. Anschließend misst du die Distanz von Gerade und Punkt entlang dieser Linie. So erhältst du:

    • Die Gerade $g$ hat einen Abstand von $2~\text{cm}$ vom Punkt $P$.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.781

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.837

Lernvideos

36.623

Übungen

33.959

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden