Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Konstruktion einer Parallelen

Parallele Geraden haben überall den gleichen Abstand zueinander und schneiden sich nie. Im Text lernst du, wie man Parallelen mit Hilfe einer Raute oder zweier Lote konstruiert. Auch die Konstruktion einer Parallelen in einem bestimmten Abstand wird erklärt. Interessiert? Weitere Details findest du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 160 Bewertungen
Die Autor*innen
Avatar
Team Digital
Konstruktion einer Parallelen
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Konstruktion einer Parallelen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Konstruktion einer Parallelen kannst du es wiederholen und üben.
  • Beschreibe die Konstruktion einer Parallelen mit einer Raute.

    Tipps

    Die Parallele wurde mithilfe von drei Kreisen konstruiert.

    Den ersten Kreis zeichnet man um $P$. Danach werden Kreise um Schnittpunkte mit der Geraden $g$ gezeichnet.

    Lösung

    Die Konstruktion einer Parallelen zu einer Geraden $g$ durch einen Punkt $P$ über eine Raute erfolgt folgendermaßen:

    • Zuerst schlägst du einen Kreis um den gegebenen Punkt $P$. Der Radius $r$ dieses Kreises muss groß genug sein, damit er die Gerade $g$ zweimal schneidet. Diese Schnittpunkte nennen wir $S_1$ und $S_2$. Für alle folgenden Kreise bleibt dieser Radius $r$ konstant.
    In dieser Konstruktionsmethode wird eine Raute mit den Seitenlängen $r$ konstruiert. In einer solchen geometrischen Form sind die sich gegenüberliegenden Seiten parallel. Mit dem ersten Kreis findet man den Eckpunkt $S_1$ dieser Raute auf der Geraden $g$.
    • Um den linken Schnittpunkt $S_1$ des Kreises mit der Geraden $g$ zeichnest du einen weiteren Kreis mit dem Radius $r$.
    • Dieser zweite Kreis schneidet die Gerade $g$ ebenfalls zweimal. Den linken Schnittpunkt nennst du $S'$ und zeichnest einen weiteren Kreis mit dem Radius $r$ um ihn.
    Dieser zweite Kreis findet den zweiten Eckpunkt $S'$ auf der Geraden $g$.
    • Der dritte Kreis schneidet den ersten Kreis im Punkt $P'$.
    • Eine Gerade $g'$ durch die Punkte $P$ und $P'$ ist parallel zur ursprünglichen Gerade $g$.
    Der dritte Kreis findet den letzten Punkt des Parallelogramms. Die Gerade durch $P$ und $P'$ muss parallel zur Geraden durch $S_1$ und $S'$ sein.
  • Beschreibe die Konstruktion einer Parallelen durch zweimalige Konstruktion eines Lots.

    Tipps

    Ein Lot konstruiert man mit zwei sich schneidenden Kreisbogen um zwei Punkte auf der Geraden, auf die das Lot gefällt werden soll.

    Ein Lot steht senkrecht auf einer Geraden. Fällt man also ein Lot auf eine Geraden $g$ und dann ein weiteres Lot auf das gerade konstruierte Lot, dann ist das zweite Lot $g'$ parallel zur ursprünglichen Geraden $g$.

    Lösung

    Die Konstruktion einer Parallelen durch zweimaliges Schlagen eines Lots funktioniert folgendermaßen:

    • Zuerst ziehst du einen Kreis um $P$, der die Gerade $g$ zweimal schneidet.
    Dieser Kreis ist der erste Schritt beim Fällen eines Lots. Damit werden die Punkte bestimmt, zwischen denen das Lot gefällt werden muss. Auf ihnen basiert die Konstruktion.
    • Die Schnittpunkte $S_1$ und $S_2$ des Kreises mit der Geraden $g$ kannst du verwenden, um ein Lot durch den Punkt $P$ zu fällen. Dafür zeichnest du jeweils zwei sich schneidende Kreisbogen um die Punkte $S_1$ und $S_2$.
    • Die Schnittpunkte der Kreisbogen verbindest du mit einer Geraden. Diese ist das Lot auf der Geraden $g$ durch den Punkt $P$.
    Die Schnittpunkte dieser beiden Kreisbogen haben jeweils den gleichen Abstand von den Punkten $S_1$ und $S_2$, zwischen denen das Lot gefällt werden soll. Und da der Punkt $P$ jeweils den gleichen Abstand von diesen beiden Schnittpunkten hat, muss er auch auf dem Lot liegen.
    • Auf dem gerade konstruierten Lot errichtest du ein weiteres Lot durch den Punkt $P$. Dieses zweite Lot heißt $g'$ und ist parallel zu $g$.
    Ein Lot steht senkrecht auf einer Geraden. Fällt man also ein Lot auf eine Gerade $g$ und dann ein weiteres Lot auf das erste Lot, dann ist das zweite Lot $g'$ parallel zur ursprünglichen Geraden $g$.
  • Erkläre die Konstruktion einer Parallelen in einem gegebenen Abstand.

    Tipps

    Der erste Schritt sieht so aus.

    Die Schnittpunkte $S_1$ und $S_2$ haben jeweils den gleichen Abstand zu der Geraden $g$.

    Lösung

    Die Konstruktion einer Parallelen in einem gegebenen Abstand $r$ zu einer Geraden $g$ funktioniert folgendermaßen:

    • Zuerst zeichnest du zwei Kreise mit dem Radius $r$ um beliebige Punkte $P_1$ und $P_2$ auf der Geraden $g$.
    Alle Punkte auf den Kreisen haben jeweils den Abstand $r$ von den jeweiligen Kreismittelpunkten $P_1$ und $P_2$.
    • Dann fällst du jeweils ein Lot durch die Punkte $P_1$ und $P_2$ auf die Gerade $g$.
    • Die Lotgeraden und die Kreise schneiden sich in den Punkten $S_1$ und $S_2$.
    • Durch die Punkte $S_1$ und $S_2$ zeichnest du eine Gerade $g'$.
    Da man die Parallele im Abstand $r$ konstruieren möchte, nimmt man die Schnittpunkte der Lotgeraden mit den Kreisen. Denn diese Punkte haben den Abstand $r$ zur Geraden und die Verbindung steht senkrecht auf der Geraden.
    • Diese Gerade $g'$ ist parallel zu $g$, denn die beiden Geraden haben überall den gleichen Abstand $r$ zueinander.
  • Bestimme die Konstruktionsbeschreibungen.

    Tipps

    Um eine Parallele im Abstand $r$ zu zeichnen, musst du zuerst Punkte bestimmen, die diesen Abstand von der ursprünglichen Geraden haben.

    Das Lot einer Geraden steht senkrecht auf der Geraden. Ein Lot auf diesem Lot liegt parallel zur Geraden.

    Lösung

    Die verschiedenen Geraden werden so konstruiert:

    Bild $1$ : Dieses Bild wird mit der ersten Methode konstruiert. Hier wird nämlich eine Parallele mithilfe einer Raute konstruiert.

    Bild $2$: Dieses Bild kannst du mit der vierten Methode konstruieren. Hier wird eine Lotgerade konstruiert, indem du sich schneidende Kreissegmente um zwei Punkte auf der Geraden zeichnest und die Schnittpunkte durch eine Gerade verbindest.

    Bild $3$: Hier wird die zweite Methode verwendet. Du konstruierst also eine Parallele zu einer Geraden $g$ durch einen Punkt $P$ mithilfe zweier Lotgeraden.

    Bild $4$ : Dieses Bild kannst du mit der dritten Methode konstruieren. Dabei wird eine Parallele mit gegebenem Abstand $r$ konstruiert, indem du den Abstand durch Kreise abträgst und das Lot durch die Kreismittelpunkte fällst. Durch die Schnittpunkte verläuft dann die gesuchte Parallele.

  • Gib die Eigenschaften paralleler Geraden an.

    Tipps

    Das sind zwei parallele Geraden $g$ und $g'$ und ihr Lot.

    Lösung

    Diese Aussagen sind falsch:

    • Parallele Geraden haben überall unterschiedliche Abstände zueinander.
    Der Abstand ist die kürzeste Verbindung zwischen zwei geometrischen Figuren. Dieser ist bei Parallelen überall gleich.
    • Parallele Geraden schneiden sich in genau einem Punkt.
    Da Parallelen überall den gleichen Abstand haben, können sie sich nicht schneiden. Ein Sonderfall sind identische Geraden: Diese schneiden sich in jedem Punkt.

    Diese Aussagen sind richtig:

    • Parallele Geraden schneiden sich nie.
    Da Parallelen überall den gleichen Abstand haben, können sie sich nicht schneiden.
    • Fällt man ein Lot auf eine Gerade $g$, dann steht dieses senkrecht auf jeder Parallelen der Geraden $g$.
    Ein Lot steht immer senkrecht auf einer Geraden. Ist die Gerade $g$ parallel zu einer anderen Geraden, muss dieses Lot auch senkrecht zu der Parallelen sein.
    • Der Abstand zweier paralleler Geraden ist überall gleich.
  • Bestimme die korrekten Aussagen zu Parallelen im Alltag.

    Tipps

    Der Abstand der Räder eines Bahnwaggons verändert sich nie.

    Hier siehst du das Schrägbild eines Quaders.

    Lösung

    Diese Aussagen sind wahr:

    • Zwei Bahnschienen sind immer parallel, auch in einer Kurve.
    Der Abstand der Räder eines Bahnwaggons verändert sich nie. Also müssen die Bahnschienen immer den gleichen Abstand zueinander haben. Sie sind demnach parallel.
    • Jeweils vier Kanten eines Quaders sind parallel zueinander.
    Ein Quader hat zwölf Kanten. Jeweils vier davon sind gleich lang und parallel zueinander.
    • Das Straßensystem des Stadtteils Manhattan in New York City besteht aus einem Netz mit vielen parallelen Straßen.
    In Manhattan verlaufen fast alle Straßen parallel zueinander: Die Straßen von Norden nach Süden heißen „Avenues“ und die Straßen von Osten nach Westen nennt man „Streets“. Viele Stadtteile auf der ganzen Welt haben ein ähnliches Straßensystem. Es dient der einfachen Orientierung.
    • Zwei Flugzeuge, die stets parallel zueinander fliegen, können niemals zusammenstoßen.
    Parallele Linien schneiden sich nie. Also kann alles, was sich parallel zueinander bewegt, niemals zusammenstoßen.

    Diese Aussage ist falsch:

    • In einem Rechteck sind alle Seiten parallel zueinander.
    In einem Rechteck sind jeweils zwei Seiten parallel zueinander.