Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Dezimalbrüche – Addieren und Subtrahieren (Übung 1)

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.8 / 69 Bewertungen
Die Autor*innen
Avatar
Mathe-Team
Dezimalbrüche – Addieren und Subtrahieren (Übung 1)
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Dezimalbrüche – Addieren und Subtrahieren (Übung 1) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Dezimalbrüche – Addieren und Subtrahieren (Übung 1) kannst du es wiederholen und üben.
  • Berechne die Summe der Dezimalzahlen.

    Tipps

    Du schreibst Stelle für Stelle untereinander und addierst sie. Überträge addierst du zur nächsten Stelle.

    Hier siehst du eine Beispielaufgabe, wie man stellenweise untereinander addiert.

    Lösung

    Hier kannst du die schriftliche Addition der beiden Aufgaben nachschauen:

    $\begin{array}{cccccc} &1&4&,&2&7 \\ +&1&1&,&8&9 \\ &&1&&1& \\ \hline &2&6&,&1&6 \end{array}$

    Es gilt also $14,27+11,89=26,16$.

    $\begin{array}{ccccccc} &2&2&,&3&1&7\\ +&&6&,&8&8&8\\ &&1&&1&1&\\ \hline &2&9&,&2&0&5 \end{array}$

    Es gilt also $22,317-6,888=29,205$.

  • Bestimme die Summe und Differenz der Dezimalzahlen.

    Tipps

    Du schreibst Stelle für Stelle untereinander und addierst bzw. subtrahierst sie. Überträge addierst bzw. subtrahierst du von der nächsten Stelle.

    Hier siehst du eine Beispielaufgabe dafür, wie man stellenweise subtrahiert.

    Lösung

    Das Ergebnis der 1. Aufgabe ist $4,7190 - 2,6134 = 2,1056$.

    $\begin{array}{ccccccc} &4&,&7&1&9&0\\ -&2&,&6&1&3&4\\ &&&&&1&\\ \hline &2&,&1&0&5&6 \end{array}$

    Das Ergebnis der 2. Aufgabe ist $5+0,74=5,74$.

    $\begin{array}{ccccc} &5&,&0&0 \\ +&0&,&7&4\\ \hline &5&,&7&4 \end{array}$

  • Ermittle, wie viele Meter Leisten benötigt werden.

    Tipps

    Der Umfang $U$ eines Rechtecks mit den beiden Seitenlängen $a$ und $b$ beträgt $U = a + a + b + b$.

    Man addiert Dezimalzahlen stellenweise untereinander. Überträge werden zur nächsten Stelle addiert.

    Hier ein Beispiel, wie man mehrere Zahlen stellenweise untereinander addiert.

    Lösung

    Das Wohnzimmer ist $5,25~m$ lang und $4,7~m$ breit. Um zu wissen wie viele Meter Leisten an allen vier Wänden angebracht werden müssen, müssen wir den Umfang des Wohnzimmers berechnen, indem wir alle vier Wandlängen addieren.

    $\begin{array}{cccccc} &5&,&2&5\\ +&5&,&2&5\\ +&4&,&7&0\\ +&4&,&7&0\\ 1&1&&1&\\ \hline 1&9&,&9&0& \end{array}$

    Es gilt: $U = 5,25~m + 5,25~m + 4,7~m + 4,7~m = 19,90~m$

    Da man allerdings die Tür ausspart, müssen wir ihre Breite von dem Umfang abziehen.

    $\begin{array}{cccccc} &1&9&,&9&0 \\ -&&1&,&5&5 \\ &&&&1& \\ \hline &1&8&,&3&5 \end{array}$

    Es gilt: $19,90~m - 1,55~m = 18,35~m$

    Wir brauchen also $18,35~m$ Leisten.

  • Bestimme den Richter mit der höchsten Punktezahl.

    Tipps

    Du addierst zwei Dezimalzahlen Stelle für Stelle. Schreibe dir Zehner, Einer, Zehntel usw. untereinander und addiere dann schriftlich, wie du es bei den natürlichen Zahlen gelernt hast.

    So kannst du Dezimalzahlen schriftlich addieren. Die Einsen in der dritten Zeile sind die Überträge.

    Lösung

    Da Dezimalzahlen stellenweise addiert werden, müssen wir immer darauf achten, dass die Kommas untereinander stehen.

    Bei Zahlen wie $27,6$, bei denen nur eine Stelle nach dem Komma steht, gibt es auch noch eine 2. Stelle, 3. Stelle und so weiter. Allerdings sind solche Stellen alle Null. Das heißt, $27,6$ ist dasselbe wie $27,600000000...$ Wenn wir allerdings nur zwei Stellen nach dem Komma benötigen, reicht es $27,60$ zu schreiben.

    Um die Gesamtpunktezahl der Richter zu bestimmen, müssen wir die Punkte für Pflicht und für Kür addieren. Für unsere Richter ergeben sich damit folgende Bewertungszahlen.

    $K1$: $38,90 + 52,51 = 91,41$

    $K2$:: $37,20 + 51,35 = 88,55$

    $K3$: $37,00 + 53,70 = 90,70$

    $K4$:$41,30 + 40,04 = 81,34$

    $K5$: $36,70 + 43,80 = 80,50$

    Der erste Richter $K1$ hat Michelle also am besten bewertet.

  • Benenne die Stellenwerte der Ziffern bei einer Zahl.

    Tipps

    Welche zwei Stellenwerte trennt das Komma voneinander?

    Die Zahl $2,45$ hat die drei Ziffern $2$, $4$ und $5$. An welchen Stellen stehen die Ziffern?

    Lösung

    Jede Ziffer hat innerhalb einer Zahl eine feste Stelle. Ein Beispiel: Die Zahl $123,456$ besteht aus einem Hunderter, zwei Zehnern, drei Einern, vier Zehnteln, fünf Hundertsteln und sechs Tausendsteln. Das heißt, dass die Stellenwerte von Ziffern nach Hundertern, Zehnern, Einern, Zehnteln, Hundertsteln und Tausendsteln aufgeteilt sind. Wenn wir das mit Buchstaben abkürzen ergibt sich daraus: HZE,zht

    H = Hunderter, Z = Zehner, E = Einer, z = Zehntel, h = Hundertstel, t = Tausendstel

  • Bestimme, wie viel Apfelsaft übrig bleibt.

    Tipps

    Du addierst bzw. subtrahierst zwei Dezimalzahlen Stelle für Stelle. Schreibe dir Zehner, Einer, Zehntel usw. untereinander und addiere bzw. subtrahiere dann schriftlich, wie du es bei den natürlichen Zahlen gelernt hast.

    Wenn das Volumen einer bestimmten Anzahl an Gläsern zum Beispiel 2,4 Liter wäre, dann bräuchten wir 4 Flaschen, da drei Flaschen nur 2,25 Liter Saft geben würden. Wie viel Saft würde nach dem Füllen der Gläser von den vier Flaschen Saft noch übrig bleiben?

    Das Ergebnis ist kleiner als 1 Liter.

    Lösung

    Um zu wissen, wie viele Flaschen wir benötigen, müssen wir zunächst berechnen, wie viel Liter Apfelsaft wir überhaupt brauchen. Dazu addieren wir die Füllmenge aller Gläser. Es folgt also: $ 0,25~l + 0,25~l + 0,5~l + 0,33~l + 0,33~l = 1,66~l$. Insgesamt benötigst du $1,66$ Liter Apfelsaft.

    Zwei Flaschen Apfelsaft ergeben $1,5$ Liter. Also brauchen wir schon mal drei Flaschen Apfelsaft.

    Nun müssen wir berechnen, wie viel Liter Apfelsaft in drei Flaschen enthalten ist. Dazu rechnen wir $0,75~l + 0,75~l + 0,75~l = 2,25$. In drei Flaschen ist $2,25$ Liter Apfelsaft enthalten.

    Da wir nur $1,66$ Liter benötigen, bleibt ein Rest übrig. Um diesen Rest zu bestimmen, rechnen wir: $ 2,25~l - 1,66~l = 0,59~l$. Es bleibt also noch $0,59$ Liter übrig.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.135

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.926

Lernvideos

37.059

Übungen

34.321

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden